
libK … 1я 721
('11

Pencorkeris
B. P. /Iаромоєа - доцент кафелри природничо-математичної освіти Јнвінського обласного інстнтугу післядипломної педагогітної освіти, заслужений прашівник освіти
України С Й Бой тегорій Лучицького вчитель фізнки виццої кваліфікадійної кавчителів фізнки ТАВК, Голова методняного об'едниння кальського району Львівськоїобл освітньоюо окруту соА. A. Гентиии

категорії, старший учитель фэики внщої көаліфікахійної ського району Львівськюї обласлі
Редактор Onez $/$ /иж'
Літературний редакгор Ааргарита Більчук
Обкладинка Олени Сокоинж

Степан Ситник

C’ 41 Фізика: Контрольні роботи. Самостійні роботи. 3бірник рівневих дач. 9 клас. - Тернопіль: Підручники і посібники, 36 нник рівневих заISBN 978-966-07-1591-2
Навчально-методичниі̆ посібник призначений для поточного і тмятинного контролю навчальних досягнень учнів. Посібник відпонілын ' тиниій
ирограмі $з$ фізики. ирограмі 3 фізнки.

Для вчителів та учнів 9 класів.

$$
\text { lif. } \therefore \text { sh } 721
$$

ISBN 978-966-07-1591-2

ПЕРЕДМОВА

Посібник складаеться 3 трьох частин.

У периій частині вміщено дидактичний матеріал, поданий у п'ятьох варіантах, кожний варіант містить завдання чотирьох рівнів складності. Матеріали призначені для перевірки навчальних досягнень учнів за дванадцятибальною снстемою оцінювання згідно з програмою з фізики для 9 класу 12 -річної школи. Сюди увійшли якісні, кількісні та експериментально-якісні завдання.

Завдаиня початкового рівня - тестові. Для їх розв'язання необхідно мати елементарні знання 3 теорії, знати основні формули, позначення фізичних величин та одиниці їх вимірювання, знати призначення приладів.

Середній рівень містить два завдання: типову розрахункову задачу і нескладне теоре ичне запитаиня,

Достатній рівень також містить два завдання. Перше - розрахункова задача, друге - експериментально-якісна задача із застосуванням малюнків, графіків, формул,

У високому рівні подано одне завдання підвищеної складності, у якому фігуруе зв'язок між різними фізичними величинами та одиницями їх вимірювання. Процес розв'язання цього завдання вимагає від учня творчого підходу і нестандартного мислення.

Верхній індекс біля номера завдання (наприклад, 5^{2}) вказує на кількість балів за правильне розв'язання задачі при виконанні контрольної роботи в повному обсязі. Якцц індекс відсутній, то правильний розв'язок слід оцінювати одним балом.

До завдань п'ятого варіанту подані відповіді та розв'язки, його можна використовувати для підготовки учнів до контрольної роботи в

До другої часовии вдома завдань, які стосуються початкових тем ийні роботи. Вони складені із клад, першу самостійну роткових тем кэжного з розділів. Напри«Закон Кулона», другу - після лдд проводити після вивчення теми тощо. Кожна самостійна робота містить чотири завдання, останна» яких (під рискою) -- найскладніше і не с обов'язковим

Третя частина містить задачі чотирьох рівнін складності з усіх розділів фізики за 9 клаะ 12 -річної школи. Вони булуть корисні для роботи на уроці та вдома при підготовці до тематинного оцінювання.

До бізьшості задач зб́ірника середнього, достатиього та високого рівнів подано відповіді, розв'язкн.

У кінці посібника подано таблиці фізичннх величин та основві формули з фізики за курс 7-9 киасів.

1. ЕЛЕКТРИЧНЕ ПОЛЕ. ЗАКОН КУЛОНА КОНТРОЛЬНА РОБОТА №1

BAPIAHT 1

Початковий рівень

1. За допомогою якого приладу визначають, чи заряджене тіло?
a) Термочетра;
б) електроскопа;
в) годинника;
г) барометра;
д) динамометра.
2. Яка з формул відловідає закону Кулона для двох точкових зарядів?
a) $F=-k x$;
б) $F=k \frac{q_{1} q_{2}}{r^{2}}$;
в) $F=m g$;
г) $F_{m}=\mu N$;
д) $p=\frac{F}{S}$.
3. Нейтральний атом гелію складається із...
a) двох протонів і двох нейтронів;
б) двох протонів і двох електронів;
в) двох протонів, двох нейтронів і двох епектронів;
г) трьох протонів і двох нейтронів;
д) двох протонів і гриох нейтронів.

Середній рісень

4. Яку масу мають 100000 електронів?
а) $3,5 \cdot 10^{-20} \mathrm{kI}$;
б) $9,1 \cdot 10^{-26} \mathrm{\kappa г}$;
г) $2,1 \cdot 10^{-18} \mathrm{kr}$;
д) $6,7 \cdot 10^{-3} \mathrm{kr}$.
5. Що можна сказати про заряди даних кульок (див. рис.)?
в) $1,6 \cdot 10^{-i 9} \mathrm{Kг}$;

Достатній рівень

6. У ядрі нейтрального атома Аргентуму 107 частинок. Навколо ядра обертаються 47 електронів. Скільки в ядрі цього атома нейтронів і протонів?
7² $^{\text {. }}$ Як за допомогою ебонітової палички і хутра перевірити, чи заряджена легенька кулька, підвішена на шовковій нитці? Поясніть.

Високий рівень

83. Два однакових заряди взаємодіють між собою на відстані 0,1 м із силою $9,8 \cdot 10^{-5} \mathrm{H}$. Яка величина зарядів?

BAPIAHT 2

Початковий рівень

1. Яким способом можна виявити електричне поле?
a) Дією на внесений в нього електричний заряд;
б) на запах;
в) на дотик;
г) на слух;
д) можна його спостерігати наочно.
2. Які $з$ тіл, що мають позитивні заряди (див. рис.), притягуються між собою?
а) 1 i 2 ;
б) 1 i 3 ;
в) 2 i 3 ;
г) 1 i $2 ; 2$ i $3 ; 1$ i 3 ;
д) жодне.
3. При освітленні деяіких речовин світлова енергія безпосередньо исретворюється в електричну. Як називають таке джерело струму?
a) Акумулятор;
б) термоелемент;
в) фотоелемент;
г) генератор;
д) електрофорна машина.

Середній рівень
4. Електроскопу надали заряд, що дорівнює $-6,4 \cdot 10^{-10}$ Кл. Якій кількості електронів відповідає цей заряд?
а) $4 \cdot 10^{9}$;
б) $7 \cdot 10^{7}$;
в) $3 \cdot 10^{3}$;
г) $2 \cdot 10^{11}$;
д) $9 \cdot 10^{4}$.
5^{2}. Що потрібно зробити, щоб атом Гідрогену перетворився в позитивний йон?

Достатній рівень
6. У ядрі нейтрального атома Цинку 65 частинок, з них 30 протонів. Скільки нейтронів у ядрі і скільки електронів обертається навколо ядра цього атома?
7² $^{\mathbf{2}}$ Як, використовуючи електричне поле зарядженої палички, змусити клапттик вати літати в повітрі? Поясніть.

Високий рівень

8 ${ }^{3}$. Із якою силою взаємодіють між собою протон і електрон, що знаходяться на відстані 1 м?

BAPLAHT 3

Початковий рівень

1. Яку дію електричного струму використовують при добуванні 3 електролітів чистих металів?
а) Теплову;
б) хімічну;
в) магнітну;
г) магнітну і теплову;
д) хімічну і магнітну.
2. Від чого залежить сила взаємодії двох зарядів?
a) Тільки від величин цих зарядів;
б) тільки від відстані між ними;
в) тільки від середовища, в яке поміщені заряди;
г) від величини зарядів, відстані між ними та середовица, в яке помішені заряди;
д) не залежить ні від чого.
3. Атом, що втратив електрон, називають...
а) молекулою;
б) негативним йоном;
в) позитивним йоном;
г) протоном;
д) нейтроном.

Середній рівень
4. Який заряд мають 1000 електронів?
а) $-2,7 \cdot 10^{-5} \mathrm{Kr}$;
б) $-4,9 \cdot 10^{-12} \mathrm{~K}$;
в) $-8,6 \cdot 10^{-4} \mathrm{KJ}$;
г) $-1,6 \cdot 10^{-16} \mathrm{Kл}$;
д) $-3,2 \cdot 10^{-20} \mathrm{~K}$.
52. Чи існує електричне поле біля палички (див. рис.)? Визначте знаки зарядів кульки та листочків електроскопа.

Достанній рівень
6. У ядрі атома Урапу міститься 238 частинок. Навколо ядра нейтрального атома Урану рухаються 92 електрони. Скільки в ялрі цього атома нейтронів і протонів?
72. Поясніть, як, користуючись ебонітовою паличкою і хутрм, визначити знак заряду, що отримує гребінець при терті йон ぃюю шлосся.

Buconai" /iat"

BAPIAHT 4

Початковий рівень

1. При перевезенні в цистернах бензин електризується, і це може призвести до його загорання. Які заходи вживають, щоб нейтралізуватн заряди, які виникають внаслідок електризації бензину?
a) Цистерну поливають водою;
б) цистерну ізолюють від впливу сонячного проміння;
в) до инстерни прикрінлюють металевий ланцюжок, який постійно торкається поверхні землі;
г) цистерну нагрівають;
д) пистерну змащують мастилом.
2. Встановіть відповідність:
a) $F_{A 1}=\rho_{p} g V$:
1) закон Кулона;
б) $F=k \frac{q_{1} q_{2}}{r^{2}}$;
2) закон Гука;
в) $F=-k x$;
3) закон Архімеда.
3. Джерелом елсктричного поля є...
a) молекули;
б) атоми;
в) лише нейтрони;
г) лише протони; д) будь-які заряджені частинки.

Середдій рівень
4. Ебонітовій паличці надали заряд, що дорівнює $-8 \cdot 10^{-12} \mathrm{Kл}$. Скільки електроиів створюють цей заряд?
а) $4 \cdot 10^{4} ; \quad$ б) $5 \cdot 10^{7}$;
в) $2 \cdot 10^{11}$;
r) $7 \cdot 10^{3}$;
д) $6 \cdot 10^{14}$.
52. Атом Хлору прийняв один електрон. Як називають утворену частинку? Який її заряд?

До mamиій pisent
6. У ядрі атома 197 частинок, з них 79 протонів. Скільки нейтронів у ядрі і скіэьки електронів обертаються навколо ядра цього атома, якщо він нейтральний?
72. Поясніть, як зарядити електрометр негативним зарядом, використовуючи паличку з органічного скла і шерсть.

Високий рівень

83. Два однакові заряди, розташовані на відстані 3 см один від одного, взаємодіють між собою із силою $0,001 \mathrm{H}$. Визначте модулі величин зарядів.

BAPIAHT 5

Почанкөвий рівень

1. Скільки протонів міститься в ядрі атома Гідрогену?
а) П'ять;
б) два;
в) один;
г) чотири;
д) сім.
2. Які з тіл, що мають негативні заряди (див. рис.), притялуються між собою?
θ^{2}
а) Yci ;
б) 2 i 3 ;
в) 1 i 3 ;
г) 1 i 2 ;
д) жодне.
3. Як залежить сила взаємодії двох точкових електричних зарядів від відстані між ними?
а) Прямо пропорційна відстані між зарядами;
б) обернено пропорційна квадрату відстані між зарядами;
в) прямо пропорційна квадрату відстані між зарядами;
г) обернено пропорційна відстані між зарядами;
д) не залежить від відстані між зарядами

Середиій рівень
4. На скільки змениилася маса скляної палицки, натертої об шовк, якщо вона втратила 50000 епектронів?
а) $\mathrm{Ha} 4,5 \cdot 10^{-26} \mathrm{kr}$;
万) $1 \mathrm{na} 2,5 \cdot 10^{-20} \mathrm{~km}$:
a) на $6,8 \cdot 10^{14}$ 6:"
г) на $3,4 \cdot 10^{-18} \mathrm{Kг}$;
1i) ! $\mathrm{aa} 1,48 \cdot 10^{-12} \mathrm{Kr}$
52. 以о можна еквзати про заряги даних кульок (тит. рие.)?

Достанниій рівень

6. У яцрі атома Нітрогену 14 частинок, 3 мих 7 нейгронів. Скільки протонів і електронів міститься в цьому атомі, якщо він нейтральний?
7². Поясліть, як зарядити електрометр, користуюччись тільки ебонітовою паличкою.

Високий рівень

8 ${ }^{3}$. Дві кульки, репаповані на відстані 10 см одна від одної, мають рівні негативні заряди і взаємодіють між собою із силою $2,3 \cdot 10^{-4}$ Н. Скільки надлннкових електронів $є$ на кожній кульці?
2. СИЛА СТРУМУ, НАПРУГА, ОПІР. ЗАКОН ОМА ДЛЯЯ ДІЛЯНКИ КОЛА

КОНТРОЛЬНА РОБОТА `22

BAPIAHTI

Почанковий рівень

1. Яка з формул виражає закон Ома для ділянки кола?
a) $q=I t$;
б) $I=\frac{U}{R}$;
(1) $R=\rho \frac{l}{S}$;
г) $F=k \frac{q_{1} q_{2}}{r^{2}}$;
д) $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$.
2. Встановіть відповідність:
а) I;
1) опір;
б) q;
2) сила струму;
в) R;
3) величина заряду.
3. При послідовному з'єднанні загальний струм...
a) дорівнює сумі струмів, що течуть через кожен провідник
б) однаковий в усіх провідниках;
в) може бути різний в усіх провідниках;
г) дорівнює добутку струмів, що течуть через кожен провідник; д) найбільший у тому провіднику, який найближче до джерела струму.

Середній рівень

4. Розряд блискавки триває $0,0016 \mathrm{c}$. За цей час через поперечний переріз дуги гроходить $8 \cdot 10^{19}$ електронів. Визначте силу струму в розряді блискавки.
a) $2,5 \cdot 10^{2} \mathrm{~A}$;
б) $1,8 \cdot 10^{4} \mathrm{~A}$;
в) $6,0 \cdot 10^{5} \mathrm{~A}$;
r) $8,0 \cdot 10^{3} \mathrm{~A}$;
д) $1,6 \cdot 10^{8} \mathrm{~A}$.
a) $1,6 \cdot 10 \mathrm{~A}$.
5. Поясніть, як зміняться покази вольтметра, якщо посліднвно з ним увімкнути резистор?

Достатній рівень
6. Знайдіть силу струму в сталевому дроті, що має довжину 20 м і переріз $2 \mathrm{mм}^{2}$, якцо до нього прикладена напруга $2,4 \mathrm{~B}$.
72. Лоясніть, як, користуючись двома вольтметрами з межами вимірювання до 6 B , виміряти нанругу на клемах джерела струму 3 напругою $10-12 \mathrm{~B}$.
8. Знайліть загальний опip ділянки кола між точками A та B (див. рис.), якщо $R_{1}=4 О м$, $R_{2}=2 \mathrm{OM}, R_{3}=2 \mathrm{Om}$.

Високий рівень

BAPIAHT 2

Початковий рівень

1. Назвіть прилад для вимірювання сили струму.
а) Реостат;
б) амперметр;
в) вольтметр;
г) електроскоп;
д) динамометр.
2. Встановіть відповідність:
a) ρ.
1) довжина провідника;
б) $/$;
2) плоца поперечного перерізу провідника
в) S;
3) питомий опір.
3. На якій схемі всі провідники з'єднані послідовно?

Середиій рівеня
4. Який опір мае мідний трамвайний провід завтовжеи 5000 m , лкщо його поперечний переріз становнть $0,65 \mathrm{~cm}^{2}$?
a) $0,5 \mathrm{OM}$;
б) $2,7 \mathrm{OM}$;
в) $3,2 \mathrm{OM}$;
г) $1,30 \mathrm{~m}$;
n) $5,8 \mathrm{Om}$.
52. Два однакові провідники з'сднаии спочатку пкралельно, а потім - послідовно. У якому випадку через провідники протікатиме більший струм, якцо до кінців з'сднанпя прикласти однакову напругу?

Достенйй piseभt.
6. Через провідяик, опір якого дорівнюе 5 Ом, за $1,5 \times$ м пройшло 45 Кл електрики. Знайдіть напруғу, прикладену до кішів пров:дника.
7^{2}. Як, використовуючи лінійку, амперметр, вольтметр та джерело деякої постійної напруги, визначити переріз даного нікелінового дроту? Поясніть.

Bucякнй рівени

83. Знайдіть струм та напруги на miopax $R_{1}=4 \mathrm{Om}, R_{2}=12 \mathrm{Om}$, $R_{3}=5 \mathrm{Om}, R_{4}=15 \mathrm{Om}$, якщо напруга нік точками M та N дорівнюе 12 B

RAPLATT 3

Hovamzobtais bisch

1. Яким ї приладів вимірюють напругу?
a) Aмперметром:
б) вольтмесром,
в) електроскопом;
г) реостатом;
д) термометом.
 a) однакова;
б) різна;
в) дорівнюе сумі напруг на кінцях кожного 3 провідників;
г) дорівнюе добутку напруг на кіниях кожного з провідників;
д) пропорційна кількості провідників.
2. Чи можна під’єднувати безпосередньо до затискачів акумуляторної батареї амперметр? вольтметр?
а) Амперметр можна, вольтметр не можна;
б) вольтметр можна, амперметр не можна;
в) можна і амперметр, і вонитметр;
г) не можна ні амперметр, ні вольтметр;
д) тільки одночасно амперметр $з$ вольтметром.

Середпйй рівони

4. Який струм тече у колі акумулятора, якцо напруга на його клемах дорівнюе 20 B , а опір кола дорівное 10 Ом?
а) 5 A ;
б) $0,5 \mathrm{~A}$;
в) 4 A;
r) $0,2 \mathrm{~A}$;
д) 2 A .
5^{2}. Напругу на кіицях провідника зменинил втричі. Sк змінилася сила струму, що протікас у провіднику?

Hocmamuiŭ pigens

6. Який додатковий опір слід узяти, цоб у мережу з напругою 120 B увімкнути лампу, яка розрахована на иапругу 40 В і струм 5 А?
7². Поясніть, як за допомогою лабораторного вольтметра зизначити знак полюсів батарейки (написи на якій стерлися) та виміряти напругу.
7. Знайдіть напругу між точками M та N, якцо $R_{1}=30 \mathrm{M}, \quad R_{2}=40 \mathrm{Om}$, $R_{3}=40 \mathrm{M}, \quad R_{4}=2 \mathrm{Om}$,
$R_{5}=100 \mathrm{M}, \quad R_{6}=10 \mathrm{M}$
Ampephap mokasyes A .

Bucorain pisetis

BAPIAIIT 4

Початкковий рівень

1. Вкажіть одиницю вим!ріовання сили струму:
а) 1 B ;
б) IOm ;
в) $1 \wedge$;
г) 1 Kr ;
д) 1 H .
2. Встановіть відповідність:
а) ρ;
1) напруга;
б) q;
2) питомий опip;
в) U :
3) кількість електрики.
3. Вкажіть, на якій схемі зображене паралельне з'сынаинія јамп:

a)

б)

B)

г)

д)

Середній рівснь

4. Два провідники, опори яких становлять 20 Ом та 40 Ом, з'єднані паралельно. Сила струму в першому провіднику дорівнюе 2 A Визначте силу струму в другому провіднику.
а) 4 A ;
б) 1 A ;
в) $0,5 \mathrm{~A}$;
г) 3 A ;
$\begin{array}{lllll}5^{2} . & \text { Два мідних гровідникн однакового перерізу мають різну довжину. } \\ \text { Як џя відмінність позначасться на }\end{array}$ Як ия відмінність позначаєтьея на величині оиору провідинків?

Дисспатиній рівень

6. Визнаяте довжину мідного дроту, ио має діаметр 0,к мм, якицо відомо, що під дією напруги 1,4 В по иьому прятікан струм 0,4 А.

Контроянна робота № 2

72. Поясніть, як визначити питомий опір даного дроту, маючи акумулятор, лабораторні амперметр та вольтметр, мікрометр і лінійку.
73. Знайдіть загальний опір ділянки кола між точками A та B, якщо $R_{1}=2 \mathrm{Om}, \quad R_{2}=2 \mathrm{Om}$, $R_{3}=2 \mathrm{OM}, R_{4}=2 \mathrm{OM}$.

Високий рівень

BAPIAHT 5

Початковий рівень

1. Вкажіть одиницю вимірювання напруги:
а) 1 A ;
б) 1 Om ;
в) 1 B ;
г) 1 K ;
д) 1 m .
2. За яким із виразів визначають питомий опір?
а) $\frac{U}{R}$;
б) $\frac{R \cdot S}{l}$;
в) $I \cdot U$;
г) $k \frac{q_{1} q_{2}}{r^{2}}$;
д) $\frac{\rho \cdot l}{S}$.
3. Цоб збільшнити силу струму на ділянці кола вдвічі, слід..
a) збільшити вдвічі опір ділянки кола;
б) зменшити у два рази напругу на кіньях ділянки кола
в) зменнити вдвічі опір ділянки кола;
г) збільшити в чотири рази напругу на кінцях ділянки кола;
д) зменшити в три рази опір ділянки кола та напругу на її кінцях

Середній рівень
4. За якої плоці поперечного перерізу мідна дротина завдовжки 50 m мас опір $0,5 \mathrm{Om}_{\text {м }}$?
а) $0,5 \mathrm{~mm}^{2}$; б) $0,8 \mathrm{~mm}^{2}$;
в) $1,7 \mathrm{~mm}^{2}$;
г) $2,4 \mathrm{~mm}^{2} ; \quad$ д) $3,6 \mathrm{~mm}^{2}$.

5 ${ }^{2}$. Чи рухаються заряджені частинки у провіднику, коли по ньому
не йде струм?

Достатиій рівень

6. До джерела постійної напруги 12 В послјідовно під'єднані лампочка і амперметр $з$ опором 0,2 Ом. Яка напруга на лампочці, якщо амперметр показує силу струму $0,5 \mathrm{~A}$?
7^{2}. Sк, використовуючи амперметр і джерело деякої постійної напруги, визначити опір одного із двох резисторів, напис на якому стерся? Відповідь обгрунтуйте.

Високий рівень
8. I3 даної схеми визначте R_{2} (див. рис.).

3. РОБОТА I ПОТУЖНІСТЬ ЕЛЕКТРИЧНОГО СТРУМУ. СТРУМ У РІЗНИХ СЕРЕДОВИЦАХ КОНТРОЛЬНА РОБОТА №3

BAPIAHT 1

Початккөий рівепь

1. Встановіть відюовідність:
a) P
1) робота;
б) I;
2) потужність;
в) A;
3) сила струму
2. Якими носіями електричних зарядів створюється струм у чистих напівпровідниках?
a) Тільки вільними електронами;
б) тільки дірками;
в) позитивними й негативннми йонами;
г) вільними електронами і дірками;
д) позитивними йонами та електронами.
3. Кількість тепноти, що виділяється у даному провіднику при проходженні електричного струму,.
a) прямо пропорційна величині струму;
б) обернено пропорційна величині струму;
в) грямо гррпорційна квадрату величини струму;
r) обернено пронорціійна квадрату величини струму;
д) обернено пропорційна напрузі на кінцях провідника.
4. Електроплитка, потужність якої дорівнює 800 Bt , працювала 5 год. Скільки спожито при цьому енергії?
a) $2 \mathrm{\kappa BT}$-гдд;
б) $4 \mathrm{kBT} \cdot$ год;
в) $0,8 \mathrm{\kappa Bт} \cdot$ год;
г) $1,5 \kappa \mathrm{BT} \cdot$ год;
д) $2,6 \mathrm{kBt} \cdot$ год.
5. Чому у плавких запобіжниках використовують переважно тонкий свинцевий дріт?

Достатитій рівень

6. До джерела постійної напруги 12 B поспыддвно під’єднані лампочка i амперметр з опором 0,2 Ом. Яка напруга на лампочці, якцо амлтерметр показуе силу струму $0,5 \mathrm{~A}$?
7^{2}. Як, використовуючи амперметр і джерело деякої постійної напруги, визначити опір одного із двох резисторів, напис на якому стерся? Відповідь обгрунтуйте.

Високий рівень
8. Iз даної схеми визначте R_{2} (див. рис.).

3. РОБОТА I ПОТУЖНІСТЬ ЕЛЕКТРИЧНОГО СТРУМУ. СТРУМ У РІЗНИХ СЕРЕДОВИЩАХ КОНТРОЛЬНА РОБОТА №3

BAPIAHT I

Початковий рівень

1. Встановіть відповідність: 1
а) P;
1) робота;
б) I;
2) потужність;
в) A;
3) сяла струму.
2. Якими носіями електричних зарядів створюється струм у чистих напівпровідннках?
a) Тільки вільними електронами;
б) тільки дірками;
в) позитивними й негативними йонами;
г) вільними електронами і дірками;
д) позитивними йонами та електронами.
3. Кількість теплоти, що виділяється у даному провіднику при проходженні електричного струму,..
a) прямо пропорційна величині струму;
б) обернено пропориійна величині струму;
в) грямо пропорційна квадрату величини струму;
г) обернено пропориійна квадрату величини струму;
д) обериено пропорційна напрузі на кіниях провідника.

Сереоній рівень
4. Електроплитка, потужність якої дорівнює $800 \mathrm{Bт}$, працювала 5 год. Скільки спожито при цьому енергії?
a) $2 \kappa В т$-год;
б) $4 \mathrm{\kappa BT}$ год;
в) 0,8 кВт год;
г) $1,5 \mathrm{\kappa Bт}$ год;
д) $2,6 \mathrm{kBT}$ год.
52. Чому у плавких запобіжниках використовують переважно тонкий свинцевий дріт?

Достатній рівень

6. Щоб покрити цинком металеві вироби, в електролітичну ванну вставили електрод, маса ялого становить $m=0,01 к$. Який заряд має пройти крізь ванну, щоб використався весь елсктрод? Електрохімічний еквівалент цинку $k=3,4 \cdot 10^{-7} \frac{\mathrm{kr}}{\mathrm{Kr}}$.
7. Як з'ясувати на досліді, яка з двох однакових за потужністю і зовнішнім виглядом ламп розрахована на більиіу напругу, маючи ировідники і джерело струму на 220 B ? Відпові, обтрунтуйте.

Високий рівень

8 3. Із нікелінового дроту з перерізом 0,1 мм 2 необхідно виготовити нагрівальний елемент, який ири силі струму 5 А за 14 xв нагрівав би 1,5 л води на $84^{\circ} \mathrm{C}$. Яку довжину повинен мати дріт?

BAPIAHT 2

Початкөвий рівень

1. Встановіть відповідність:
а) A;
1) $о п і р ;$
б) P;
2) робота;
в) R;
3) потужність.
2. Які носії зарядів створюють струм у металах?
a) Візьні електрони;
б) дірки і вільні електрони;
в) позитивні йони;
1) позитивні і негативні йони;
д) негативні йони.
3. Спіраль електричної лампочки нагрівається сильиінс від нідвідних провідників тому, що...
a) через неї проходить більший струм;
б) у неї більший опір;
в) у неї мениий опір;
г) вона перебуває лід нижчою напругою, ніж підвідні провідники;
д) через неї проходить менший струм.

Середній рівень

4. Пальник, по має потужність 110 Bt , працює під напругою 220 В. Який опір цього пальника?
a) 220 Om ;
б) 180 Om ;
в) 440 Om ;
1) 225 Om ;
a) 127 Om .
52. Чому спіраль електроплитки при довготривалому розжаренні не тшавиться?

Достатиій рівень

6. Лампи потужністю 60 Bt і 120 Br розраховані на напругу 220 B . Яку потужність вони епоживатимуть, якцц їх увімкнути в коло нослідовно?
7². Якими способами можна визначити потужність електричних приладів, що використовуються у вашій квартирі? Поясніть.

Високий рівень

8 ${ }^{3}$. Для нікелювання деталі протягом 2 год крізь вачну пропускали струм 25 А. Електрохімічний еквівалент нікелюо $3,4 \cdot 10^{-7} \frac{\mathrm{Kr}}{\mathrm{Kr}}$, його густина $8,9 \cdot 10^{3} \frac{\mathrm{~K} \mathrm{\Gamma}}{\mathrm{~m}^{3}}$. Яка товщина шару нікелю, що виділився на деталі, якщо її плоша становить $0,2 \mathrm{~m}^{2}$?

BAPIAHT 3

Початковий рівень

1. Одиницею вимірювання роботи електричноюо струму є...
a) 1 A ;
б) 1 B ;
в) 1 Дж;
г) $1 \mathrm{Bт}$;
д) 1 Om.
2. Які носії вільних зарядів створюють електричний струм у газах?
а) Тільки вільні електрони;
б) тільки позитивні йони;

22 3. Робота і потуюкність електричного стрруму. Струм у різних серидовицах
в) тільки негативні йони;
г) вільні електрони і позитивні та негативні йони;
д) вільні електрони та позитивні йони.
3. Формула для закону Джоуля-Ленца має вигляд:
a) $U=I R$;
б) $Q=m q$;
в) $Q=I^{2} R t$;
г) $P=U I$;
д) $A=P t$.

Середпій рівень

4. У провіднику, що має опір 25 Ом, за 5 с виділилося 500 Дж теплоти. Яка сила струму в колі?
а) 1 A ;
б) $0,5 \mathrm{~A}$;
в) $2,5 \mathrm{~A}$;
г) 2 A ;
д) 6 A .
5^{2}. Чому, коли вийняти з води електричний кип'ятильник, ввімкнений у мережу, спіраль його може перегоріти?

Достатній рівень

6. Скільки часу нагріватиметься 3 л води від $18^{\circ} \mathrm{C}$ до кипіння в електричному чайнику, що має потужність 800 Вт з ККД 87% ?
7^{2}. Як зміниться розжарення спіралі електроплитки, якщо четверту частину ї замкнути мідним дротом? Відповідь обгрунтуйте.

Високий рівень

83. Скільки елекороенергії (в кіловат-годинах) витрачаеться на рафінувания 1 т міді, якщо напруга між електродами електролітичної ванин дорівиое $0,5 \mathrm{~B}$? Електрохімічний еквівалент міді ctahobits $3,3 \cdot 10^{-7} \frac{\mathrm{KI}}{\mathrm{Kл}^{\prime}}$.

BAPLAHT 4

1. Якими одиницями вимірюють потужність електричнню струму?
а) 1 B ;
б) 1 Дж;
в) 1 BT ;
г) 10 O ;
刀) $1 \wedge$ 。
2. Електричний струм в електролітах створнюю...
a) вїнні електрони;
б) позитивні та негатквні йони;
в) дірки і вільні електрони;
г) тільки негативні йони;
д) тільки позитивні йони.
3. Роботу електричного струму можна виміряти...
a) ватметром;
б) реостатом;
в) вольтметром;
г) амперметром;
д) електролічильником.

Середній рівень

4. Скільки часу нагрівалася плитка, що має потужність 1 кВт, якщо виділилося 0,6 МДдж тепла?
a) 4 XB ;
б) $2,5 \mathrm{xB}$;
в) 12 xB ;
r) $8 \times \mathrm{xB}$;
д) 10 xb .
5. Чому через тривалий проміжок часу в тій самій лампі та при тій самій иапрузі зменшується сила струму?

Достатній рівень

6. При силі струму 1,6 А на катоді електролітичної ванни за 10 хв відклалось 0,316г міді. Визначте електрохімічний еквівалент міді.
7². Як, маючи амперметр, акумулятор, вимикач, визначити потужність струму в спіралі на 4 Ом? Поясніть.

Високий рівень

83. Для виготовліення реостата витратили 16 м нікелінового дроту, поперечний переріз якого становить 2 мм 2. Яка кількість теплоти виділятиметься в реостаті за 15 хв при силі струму 3 A ?

Bapiaht 5

Почаниковий рівень

1. Як зміниться потужність споживача, якщо струм збільшити у два рази?
a) Збільшиться у 2 рази;
б) зменшиться у 2 рази;
в) зменшиться в 4 рази;
г) збільшиться в 4 рази;
д) не зміниться.
2. Який із виразів дає можливість обчислити роботу електричного струму?
a) $U I$;
б) $\frac{A}{t}$;
в) $\frac{U^{2}}{R}$;
г) $U I t$;
а) $\frac{U}{R}$.
3. Який вид самостійного розряду відбувається в лампах денного світла?
a) Коронннй;
б) дуговий;
в) іскровий;
г) тліючий;
д) коронний і дуговий одночасно.

Середній рівсни
4. Визначте потужність, яку споживає електричний прилад, увімкнений у мережу з напругою 110 B , якщо опір обмотки приладу дорівнює 605 Ом?
а) 20 BT ;
б) 200 BT
в) 110 Bt ;
г) 220 BT ;
д) 300 Br .
5^{2}. Як можна усунути небезпеку загорання провідників при короткому замиканні?

Достатиій рівень

6. Через провідник, що мас олір 12 Ом, за 2 хв гиройшло 500 Кл електрики. Скільки теплоти при цьому виділилось?
7² 2. Як встановити на досліді, яка із двох зовні однакових ламп, розрахованих на 220 B , має більшу потужність, якщо написи на лампах відсутні? Поясніть.

Bисокнй рієснь

8 ${ }^{3}$. Ремонтуючи спіраль, довелося ї вкоротити на 0,2 довжини. У скільки разів збільшилася кількість теплоти, що виділяється за 1 с'?

4. МАГНІТНЕ ПОЛЕ КОНТРОЛЬНА РОБОТА №4

BAPIAHT 1

Початковий рівень

1. Рухомий заряд створює:
a) тільки мат нітне поле;
б) тіыьки електричне поле;
в) тіыьки гравітаційне поле;
г) магнітне й електричне поля;
д) ніяких полів не створюс.
2. Різнойменні полюси магніту...
а) завжди відштовхуються;
б) завжди притягуються;
в) відитовхуються лише тоді, коли магніти розтановані перпендикулярно один відносно одного;
г) притягуються лише тоді, коли магиіти розташовані паралельно одиІІ відносно одного;
д) не взаємодіють.
3. Як взаемодіють між собою паралельні провідники, по одному 3 яких проходить електричний струм?
a) Провідник зі струмом притягуеться до провідника без струму;
б) провідник без струму відштовхуеться від провідника із струмом;
в) провідник без струму притягується до провідника із струмом;
г) провідник із струмом відштовхується від провідника без струму;
д) провідники не взаєммодіють.

Cт редній рівень

4. Визначте напрям сил, цю діють на провідник зі струмом у магнітному полі (див. рис.).
а) Вниз;
б) вгору;
г) від нас;
д) праворуч.

в) до нас;
$\mathbf{5}^{\mathbf{2}}$. Як найпростіше розділити чорні та кольорові метали в металевому брухті?

Достатніій рівень

6. Лампа живиться постійним струмом. Чи виявить магнітне поле стрілка компаса, якщо його піднести до шнура, що з'єднує лампу із джерелом струму (див. рис.).

7². Є два ножовочних полотна, одне з яких намагнічене. Поясиіть, як визначити, яке 3 них намагнічене.

Високий рівень

83. У якому напрямі рухатиметься вільно підвішений провідник $A B$, якщо його наближати до закріпленого провідника $C D$? Напрями струмів вказані на рисунку.

BAPIAHT 2

Початковий рівень

1. Силові лінії постійного магніту...
а) виходять $з$ південного полюса і входять у північний;
б) вихс дять з північного полюса і входять у південний;
в) вихо, ять 3 південного полюса і спрямовані поза магнітом;
г) виход»ть $з$ північного полюса і спрямовані поза магнітом;
д) виходять з обох полюсів і замикаються всередині магніту.
2. Чи завжди електричний струм створює магнітне поле?
а) Так, завжди;
б) ні, лише тоді, коли проходить по залізному провіциику;
в) ні, пише годі, коли проходить по мідному провіднику;
г) ні, гише тоді, коли проходить по котушці;
д) ні, не створюе зовсім.
3. За яким правилом можна визначити напрям сили Ампера?
а) За правилом свердлика;
б) за правилом правої руки;
в) за правилом лівої руки;
1) за правилом взасмодії двох провідників зі струмом;
д) за правилом взасмодії двох постійних магнітів.

Середній рівень
4. Визначте, як поведеться провідник у магнітному полі (див. рис.), якщо через нього пронустити струм у вказаному напрямі.

a) Провідник втягнеться у магніт;
б) провідник виштовхнеться з магніту;
в) провідник залишиться нерухомим;
г) провідник рухатиметься вгору (до південного полюса магніту);
д) провідяик рухатиметься вниз (до північного полюса магніту).

5 2. Назвіть основні частини амперметра постійного струму та поясніть іх призначення.

Достатиій рівень
6. Вкажіть стрілкою, куди спрямований струм у кільці, якщо магніт виштовхуеться у вказаному напрямі (див. рис.)?

7^{2}. Як впливають на величину підіймальної сили електромагніту сила струму, що проходить по котуииі, та наявність всередині котушки залізногс осердя? Полсніть.
83. Намагнічену сталеву лінійку зігнули так, що її кінці дотикаються. Чи буде в місці дотику притягуватися до лінійки сталевий предмет? Чому?

BAPLAHT 3

Початковий рівень

1. Як взаємодіютть між собою полюси двох магнітів?
a) Притягуються;
б) відштовхуються;
в) однойменні відштовхуються, різнойменні притягуються;
г) однойменні притягуються, різнойменні відштовхуються;
д) не взаємодіють.
2. Південний магнітний полюс Землі розташований...
a) біля Південного географічного полюса;
б) біля Північного географічного полюса;
в) на екваторі;
г) біля Грінвіча;
д) в Україні.
3. Який полюс буде біля загостреного кінця цвяха, якщо до шапочки цвяха наблизити південний полюс магніту?
a) Південний;
б) північний;
в) південний і північний одночасно;
г) полюси почергово змінюватимуться;
д) жоден.

Середній рівень
4. Куди рухатиметься провідник $A B$, якщо його під"єднати до джерела так, як показано на рисунку?
a) втягуватиметься магнітом;
б) виштовхуватиметься з магніту;
в) напрям руху визначити неможливо;
г) рухатиметься до південного полюса магніту (вгору);
д) рухатиметься до північного полюса
 мarнiтy (вниз).
$\mathbf{5}^{2}$. Чому намагнічений предмет не може мати тільки один полюс?
Достатній рівень
6. У якому напрямі треба пропустити струм по провіднику $A B$, щоб магнітна стрілка $M N$ повернулася північним полюсом до спостерігача (див. рис.)?

7². На магніті не вказані магнітні полюси. Як їх можна визначити?
83. Високий рівень яких вкзані внесли три провідники зі струмами, напрями яких вказані на рисунку. Які напрями мають сили, що діють 3 боку магнітного поля на провідники A, B і C ?

Biphuth

Почетиковий рісень

а) Алюміній;
б) залізо;
B) мidb;
г) свинець;
л) ніхром.
2. На провідник зі струмом у магнтному полі ле сапа...
a) тільки мапнннна
6) гільнн Механічна;
в) тільки елсктрична;
г) діл сил завжди дорівние нулио;
д) пружності
3. Skір - це...
a) нерухома вастина електродввтуна;
б) рухома частнна електродвинуна;
в) постійний магиіт електродвнгуна:
г) пристрій ;ля підведсиня електричноюо отруму;
д) приетріи ния запуску електропвитупа.

Cenconă пifent
4. Ha рисункая зображено прові-
 магнтиого ноия. Вкакіть номери рисункія, на яках напрям ліній совнадас 3 напрямомя обертания сьрінки годинниха
a) 2 i 4 ; 52 i 3 ;
a) 13.
r) 1 i 2 ;
5) 114

> Hecturnaimpors
6. Прямий пуовinинк зi струок, экнй

 pormasteba abocom naretry?
 пути ией цвях. не перевертаючи пляинуу і не опускаюни в неї иіяких предметів?

Високий рівени

83. До кіня магиту пригянулася залізна кулька. На магиіт кладуть пматок сталі і переміпуюпн у напрямі, вказаному на рисунеу. Чи впаде кулька?

BAPLAHT 5

1. Явице електромагиітиої іияукиї відкрив...
a) Еретед;
б) Фарадей;
в) Aкoणi;
г) Амиер;
д) Джоули.
2. Де використовукть, здатиість іровідника зі струмом рухатись у магнітиому полi?
a) У генераторах струму;
б) в електродвигунах;
в) в електроплитках;
г) е електромагиітах;
д) в роостатах.
 хасться?
a) Tтыки мапитне;
6) тыии елетринне;
в) тізнкн гравінаційе;

7) move

Середній рінень

4. Як рухатиметься магніт після замикання кола (див. рис.)?
а) Вниз;
б) вгору;
в) праворуч;
г) ліворуч;
д) залишиться нерухомим.

5 ${ }^{2}$. На яких явищах базується дія двигуна постійного струму?
Достатинй рівень
6. Куди напрямлена сила, що діє на нровідник зі струмом (див. рис.)?

7^{2}. Як сконструюввти компас, маючн іровідинк, джерело струму, дощечку і посудину з водою?

Високий рівень

83. Визначте полюси джерела струму, якщо провідник виштовхується $з$ магніту (див. рис.). Обгрунтуйте відповідь.

5. АТОМНЕ ЯДРО. ЯДЕРНА ЕНЕРГЕТИКА КОНТРОЛЬНА РОБОТА № 5

BAPIAHT 1

Початковий рівень

1. Що таке α-громені?
a) Це потік швидких електронів;
б) це епектромагнітні хвилі;
в) це пютік ядер Гелію;
г) це потік позитронів;
д) це потік ядер Феруму.
2. Якою одиницею в СІ вимірюють активність радіонукліда?
a) 1 c ;
б) 1 Дж;
в) 1 Бк;
r) 1Γ;
д) $1 \frac{\Gamma \mathrm{p}}{\mathrm{c}}$.
3. Що є причиною виникнення радіоактивного випромінювання?
а) Самовільний розпад ядер атомів радіоактивних елементів;
б) вплив магнітного поля на ядра атомів;
в) вплив гравітаційного поля на ядра атомів;
г) вгиив темгератури на радіоактивні речовини;
д) вллив електричного поля на ядра атомів.

Середній рівень

4. Назвіть хімічний елемент, у ядрі атома якого 143 нейтрони і 92 протони.
a) Радій;
б) Плутоній;
в) Уран;
г) Ілюмбум;
д) Ферум.

5 2. Що таке доза поглинання і як поглинуте радіоактивне випромінювання різних доз впливає. на організм людини?

Достатиій рівень

6. Потужність дози γ-винромінювання в зоні радіоактивного забруднення дорівнює $0,16 \mathrm{~m} Г$ р/год. Скільки часу може перебувати людина в цій зоні, якщо гранична доза дорівнюе 0,2 Пр?
$\frac{34}{7^{2} .}$ Чи можна зовнішніми діями зміиомие ядро. ядерна енергетиика розпаду атома? Поясніть.
7. На сьогодні в різних високий рівені, стосовують близькс ста рал науки, техніки і виробництва зазастосування радіоактивного йодувних ізотопів. Назвіть галузі

BAPIAHT 2

1. Що таке β-промені?

Погатковий різень
a) Це потік позитронів;
б) це потік швидких електронів;
в) це потік ядер гелію;
г) це потік нейтронів;
д) це потік лдер Плюмбуму.
2. Якою одиницею в СІ вимірюють поглинуту дозу випромінювання?
а) $1 \mathrm{Б} \mathrm{\kappa}$;
б) $1 \frac{\Gamma p}{c}$;
в) 1Γ;
г) 1 Дж;
д) 1 H .
3. Радіоактивність - це:
а) розпад ядер під впливом сонячного світла;
б) явище самовільного випромінювання ядра

елементів;
в) утворення нових хімічних елементів;
г) поглинання енергії атомами;
д) розпад ядер у процесі нагрівання
4. Скільки нейтронів містить ядро ${ }_{52}^{124} \mathrm{Te}$?
а) 52 ;
б) 124 ;
в) 176 ;
г) 72 ;
д) 50

відкрите?
6. Людина може працювати в зоні Дocmamuiй pise 40 годин. Яка потужність воні радіоактивного забруднен що гранична доза дорівнюоє 0,15 Гр?

нювання? Як ними користуватися?
8. Які ваші міркування про шкоду і Високий рівеп тростанцій?

Baplaht 3

1. Що таке γ-промені?

Початковий рівень
а) Це потік повільних електронів;
б) це потік ядер Гелію;
в) це електромагнітні хвилі малої довжини
г) це потік ядер Радію;
д) це потік позитронів.
2. Якою одиницеюо в СІ вимірюють потужність радіоактивного випромінювання?
а) $1 \frac{\Gamma p}{c}$;
б) 1 Дж;
в) $1 \mathrm{Б} \mathrm{\kappa}$;
г) 1 c ;
д) 1Γ.
3. Які части!ки с нуклонами?
a) Ядра всіх атомів;
б) електрони і позитрони;
в) протони і нейтрони;
г) фотони;
д) α-частинки і β-частинки.
4. Џ⿺ визначає порядковий номер хіния Ceредиій різень

ній системі хімічних елементів Менделсева?
а) Кількість нейтронів у ядрів Менделсева?
б) кількість протонів у ядрі;
в) кількість нуклонів у ядрі;
r) різницю між кількістю протонів і нейтронів у ядрі;
д) сумарну кількість нуклонів у ядрі та електронів, що рухаються навколо ядра.
52. Рух електрона в атомі і рух планет навколо Сонця мають дуже приблизну аналогію. У чому суть цієї аналогії?

Достатній рівень

6. Заряд ядра атома деякого хімічного елеменга дорівнює $3,2 \cdot 10^{-18} \mathrm{Kл}$. Який порядковий номер цього елемента в періодичній системі хімічних елементів Меңделєєва?
7. Опишіть способи захисту від α, β і γ-вилромінювання.

Високий рівень

83. Середня поглинута доза випромінювання працівником, який працює в зоні радіоактивного забруднення, дорівнює 5 мкГр за годину. Скільки днів по 8 годин щодня може перебувати в цій зоні працівник, якщо допустима доза становить 10 мГр на рік?

BAPIAHT 4

Початковий рівень

1. Хто запропонував ядерну (планетарну) модель будови атома?
a) Томсон;
б) Беккерель;
в) Менделєєв;
г) Резерфорд;
д) Кулюн.
2. За якою формулою розраховують поглинуту дозу випромінювання?
а) $P=\frac{D}{t}$;
б) $D=\frac{W}{m}$;
в) $E=m g h$;
г) $P=U I$;
д) $F=m g$.
3. Активність радіонукліда -- це...
a) кількість розпадів атомних ядер за 1 c ;
б) відношення поглинутої енергії іонізуючого випромінювання до маси опромінюваної речовини;
в) поглинута доза випромінювання, що відноситься до одиниці часу;
г) відношення кількості атомних ядер, що розпалися, до їх маси; д) кількість розпадів атомних ядер за 1 добу.

Середній рівень

4. Як змінюеться номер елемента в періодичній системі хімічних елементів Менделєєва внаслідок β-розпаду ядра його атома?
а) Зменнується на одиницю;
б) зменшується на дві одиниці;
в) збільшується на одиницю;
г) збільшується на дві одиниці;
д) не змінюеться.
5. Скільки протонів і нейтронів містять ядра атомів Літію, Магнію, Алюмінію?

Достатній рівень

6. Потужність дози γ-випромінювання в зоні радіоактивного забруднення дорівнює 0,4 мГр/год. Працівник може перебувати в цій зоні 625 годин. Якою є гранична доза для працівника?
7^{2}. Чому агомну енергію не застосовують на таких засобах пересу. вання, як автомобілі, літаки, мотоцикли?

Високий рівень

83. Ядра атомів усіх хімічних елементів складаються із протоиів і нейтронів. Як тоді пояснити, що під час радіоактивного β-розпаду ядер атомів деяких елементів випромінюються електрони?

BAPIAHT 5

Початпковий рівень

1. Хто відкрив явице природної радіоактивності?
а) П. Кюрі;
б) Е. Резерфорд;
в) А. Беккерель;
г) М. Склодовська-Кюрі;
д) Д. Менделяев.
2. За якою формулою розраховують потужність радіоактивного випромінювання?
a) $W=D \cdot m$;
б) $A=U I t$;
в) $P=\frac{D}{t}$;
г) $D=\frac{W}{m}$;
д) $m=k I t$.
3. Яка основна причина великої проникної здатності нейтронів?
a) Їхня порівняно велика маса;
б) відсутність електричного заряду;
в) велика швидкість руху;
г) наявність великого електричного заряду;
д) дуже малі розміри.

Середпій рівень

4. Як зміниться номер елемента в періодичній системі хімічних елементів Менделєєва внаслідок α-розпаду ядра його атома?
а) Збільшиться на одиницю;
б) збільшується на дві одиниці;
в) зменшиться на дві одиниці;
г) зменшиться на чотири одиниці;
д) не змінюється.
5. Оксиген мас три ізотопи: ${ }_{8}^{16} \mathrm{O} ;{ }_{8}^{17} \mathrm{O} ;{ }_{8}^{18} \mathrm{O}$. Чим відрізняються ці ізотопи між собою?

Достатиій рівснь

6. Допишіть рівняння ядерної реакції:
a) ${ }_{4}^{9} \mathrm{Be}+? \rightarrow{ }_{6}^{12} \mathrm{C}+{ }_{0}^{1} \mathrm{n}$;
б) ${ }_{13}^{27} \mathrm{Al}+? \rightarrow{ }_{11}^{24} \mathrm{Na}+{ }_{2}^{4} \mathrm{He}$.
7^{2}. Поясніть, як зберігають радіоактивні препарати.

Високий рівень

83. Середня поглинута доза випромінювання працівником, який працюе з рентгенівською установкою, дорівнює 7 мкГр за годину. Чи є небезпечною робота працівника протягом 200 днів на рік по 6 годин на день, якщо гранично допустима доза становить 50 мГр на рік?

1. ЕЛЕКТРИЧНЕ ПОЛЕ. ЗАКОН КУЛОНА CAMOCTIЙHA POБOTA №1

BAPIAHT 1

1. Як взаємодіють між собою тіла, що мають різнойменні електричні заряди? Наведіть приклади.
2. Яку масу мають 100 електронів?
3. У ядрі атома Стануму 118 частинок. Навколо ядра нейтрального атома обертаються 50 електронів. Скільки в ядрі цього атома нейтронів і протонів?
4. Два однакових заряди взаємодіють між собою на відстані 0,2 м із силою $9 \cdot 10^{-1} \mathrm{H}$. Яка величина зарядів?

BAPIAHT 2

1. Вкажіть, яка частинка атома має позитивний заряд, а яка - негативний.
2. Електроскопу надали заряд, що дорівнює $8 \cdot 10^{-15}$ Кл. Якій кількості електронів відповідає цей заряд?
3. У ядрі атома Феруму 55 частинок, з них 26 протонів. Скільки нейтронів у ядрі і скільки електронів обертаються навколо ядра нейтрального атома Феруму?
4. Із якою силою взаємодіють мік собою два протони, що перебувають на відстані 0,1 м?

BAPLAHT 3

1. Чи є нейтральним атом Гелію, якщо навколо його ядра обертається один електрон? Чому?
2. Який заряд мають 3000 електронів?
3. У ядрі атома Нептунію міститься 237 частинок. Навколо ядра нейтрального атома рухаються 93 електрони. Скільки в ядрі цього атома нейтронів і протонів?
4. На якій відстані один від одного розташовані заряди $1,0 \cdot 10^{-4} \mathrm{Kл}$ i $1,0 \cdot 10^{-5}$ Кл, якщо вони взаємодіють між собою із силою 9 H ?

BAPIAHT 4

1. Як можна виявити електричне поле поблизу зарядженого тіла?
2. Ебонітовій паличці надали заряд, що дорівнює $9,6 \cdot 10^{-13} \mathrm{Kл}$. Скільком електронам відповідає цей заряд?
3. У ядрі атома Радону 222 частинки, з них 86 протонів. Скільки нейтронів у ядрі і скільки електронів обертаються навколо ядра нейтрального атома Радону?
4. Два однакові заряди, розташовані на відстані 9 cm один від одного, взаємодіють між собою із силою $1,0 \cdot 10^{-5} \mathrm{H}$. Визначте модулі величин зарядів.

2. СИЛА СТРУМУ, НАПРУГА, ОПІР. ПИТОМИЙ ОПІР. ЗАКОН ОМА ДЛЯ ДІЛЯНКИ КОЛА САМОСТІЙНА РОБОТА № 2

Baplaht 1

1. Полснтя, у чому принципова відмінність між провідниками та діепектиками.
2. Розряд блискавки триває $0,0025 \mathrm{c}$. За цей час проходить $5 \cdot 10^{20}$ електронів. Визначте силу струму в розряді олискавки.
3. Знайдіть сипу струму в алюмінієвому дроті завдовжки 50 м і 3 поперечним перерізом $2,8 \mathrm{mм}^{2}$, якцо до нього прикладена напруга $2,5 \mathrm{~B}$.
4. На котушку елекгромагніту намотано мідний дріт завдовжки 200 m , площа поперечного перерізу якого дорівнює $0,03 \mathrm{~mm}^{2}$. Знайдіть опір і масу обмотки.

BAPIAHT 2

1. Як залежить опір металевого провідника від температури?
2. Який опір має алюмінієвий провідник завдовжки 200 m , якщо його поперечний переріз становить $1,4 \mathrm{~mm}^{2}$?
3. Через провідник, опір якого дорівнює 6 Ом, за 2 хв проходить 60 Кл електрики. Знайдіть напругу, прикладену до кінців провідника.
4. Сила струму у спіралі електрокип'ятильника становить 4 A . Кип'ятильник увімкнено в мережу з напругою 200 В. Яка довжина ніхромового дроту, 3 якого виготовлена спіраль кип'ятильника, якцо площа його поперечного перерізу дорівнює $0,1 \mathrm{~mm}^{2}$?

BAPIAHT 3

1. Про зв'язок яких електричних величин ідеться в законі Ома для ділянки кола?
2. Який струм тече в колі акумулятора, якщо напруг: на його клемах дорівнюе 12 B , а опір кола становить 6 Ом?
3. у скільки разів відрізняються опори двох алюмінієвих дротів, якщо один із них має у 6 разів більшу довжину й утричі більшу площу поперечного перерізу, ніж інший?
4. Сила струму в нагрівальному елементі Самостійна робота рівнюе 4 А за напруги 120 в елементі електричного чайника доякого виготовлена обмотка, якщойдіть питомий опір матеріалу, з 0,24 мм 2.
5. Чи BAPLAHT 4

лений?
2. Сила струму, що тече провідником, становить 50 мА. Знайдіть напругу на кінцях провідника, якщо його опір дорівнює 40 Омайд. якщо відомо, що під дієювого дроту, який має діаметр 1,13 мм, 0,5 A.
4. Відрізок нікелінового дроту завдовжки 25 см і 3 площею поперечного перерізу 0,1 мм 2 під'єднали в 25 см і з площею попеструм протікає через цей дріт, якщо на його
га 6 B ?

3. POF
 ЗАКОН ДЖОУЛЯ-ЛЕНЦА. ЕЛЕКТРИЧНОГО СТРУМУ. РОЗЧИНАХ I РОЗПЛАВАХ ЕЛЕИЧНИЙ СТРУМ У САМОСТІЙНА РОБОТА №3

1. Як на п вакиц BAPLHT 1

колі? Як. для цього потрібні прилади? роботу електричного் струму в
2. Електроплитка потужнісні прилади?

ки при цьому спожито енергії? 600 Вт, працювала 4 год. Скіль-
3. Щоб по

вставили електрод, маса якого вироби, в електролітичну ванну всавили електрод, маса якого 0,224 кг. Який заряд має пройти

Самостійна робота
крізь ванну, щоб використався весь електрод? Електрохіміч еквівалент срібла дорівнює $1,12 \cdot 10^{-6} \frac{\kappa г}{\kappa_{л}}$.
4. Iз нікелінового дроту з перерізом $0,2 \mathrm{mм}^{2}$ необхідно виготови нагрівник, який при силі струму 4 А за 12 хв нагрівав би 2 л в ди на $72^{\circ} \mathrm{C}$. Яку довжину повинен мати дріт?

BAPIAHT 2

1. Якими приладами і як можна вимір

струму на будь-якій ділянці кола?
2. Нагрівальний еле

пругою 120 В. Який опір цього нагрівального 60 т, працює під на-
3. 山ия иікелювання дер цього нагрівального елемента? струм 20 A . Яка товщина протягом 1 год крізь ванну пропускали якцо плоца їі поверхні $0,1 \mathrm{~m}^{2}$? Електрохімічний еквівал на деталі, тина иікепо відповідно доріви тина иікепо відповідно дорівнюють $3,4 \cdot 10^{-7} \frac{\mathrm{~K} \mathrm{\Gamma}}{\mathrm{~K}_{\mathrm{J}}}$ і $8,9 \cdot 10^{3} \frac{\mathrm{Kг}}{\mathrm{~m}^{3}}$.
4. Лампи, потужність яких дорівнюе 75 Вт та 150 BT , розраховані на нагругу 220 В. Яку потужність вони споживатимуть, якщо їх увімкнути в коло послідовно?

BAPLAHT 3 електричний струм?

ла. Яка скла струму в колі? 40 Ом, за 4 с виділилося 640 Дж теп-
3. Скільки гричному чайнику, який має потужність 400 лт $20^{\circ} \mathrm{C}$ до $70^{\circ} \mathrm{C}$ в елек-
4. Скільки кіловат-годин електроенергії витрачається на рафінування 1,188 т міді, якщо напруга між електродами електролітичної ванни дорівнює 1 B? Електрохімічний еквівалент міді становить $3,3 \cdot 10^{-7} \frac{\mathrm{KT}}{\mathrm{KJ}}$.

BAPIAHT 4

1. Чому у плавких запобіжниках не використовують дріт із тугоплавких металів?
2. Скільки часу працювала плитка, цо має потужність $0,8 \kappa \mathrm{Br}$, якщо виділилося 0,4 МДж тепла?
3. ' При силі струму 1,5 А на катоді елекгролітичної ванни за 20 хв осіло 0,594 г міді. Визначте електрохімічний еквівалент міді.
4. Дтя виготовлення реостата витратили 15 м нікелінового дроту, поперечний переріз якого 1,5 мм 2. Яка кількість теплоти виділиться в реостаті за $10 \times$ пр при силі струму 4 A ?
5. ПОСТІЙНІ МАГНІТИ. ДІЯ МАГНІТНОГО ПОЛЯ НА ПРОВДНИК ЗІ СТРУМОМ САМОСТІЙНА РОБОТА №4

BAPIAHT I

1. Як за допомогою компаса можна визначити полюси магнітів?
2. Вкажіть полюси магніту (див. рис.).

3. У якому начрямку прискорюється провідник, розміщений перпендикулярно до площини рисунка, якщо струм у провіднику йде від читача (див. рис.)?

$$
S
$$

4. Два провідники А і В зі струмом помістияи між полюсами магніту (див. рис.). Вкажіть напрям руху провідників.

Baplaht 2

1. Де знаходяться магнітні полюси Землі?
2. На рисунку показано напрям силових ліній магнітного поля прямого провідника зі струмом. У якому напрямі йде струм?

3. Визначте полюси магніту, якщо відомо, що при напрямі струму від читача на провідник діє сила, напрямнена праворуч (див. рис.).

5. АТОМ I АТОМНЕ ЯДРО. ІОНІЗУЮЧА ДІЯ РАДІОАКТИВНОГО ВИПРОМІНЮВАННЯ
 САМОСТІЙНА РОБОТА №5
 BAPIAHT 1

1. Що таке активність радіонукліда і як вона впливає на швидкість розпаду атомннх ядер?
2. Вкажіть хімічний елемент, у ядрі атома якого міститься 125 нейтронів та 84 протони.
3. Потужність дози γ-випромінювання в зоні радіоактивного забруднення становить $0,32 \frac{\mathrm{~m} \Gamma \mathrm{p}}{\text { год }}$. Скільки часу може перебувати людина в цій зоні, якцо гранична доза дорівнює 0,4 Гр?
4. Середня поглинута доза випромінювання працівником, який працює 3 рентгенівською установкою, дорівнює 6 мкГр на годину. Чи є небезпечною робота працівника протягом 230 днів на рік по 5 год на день, якщо гранично допустима доза становить 42 мГр на рік?

BAPIAHT 2

1. Від чого залежить поглинута доза випромінювання?
2. Скільки нейтронів містить ядро атома Стануму ${ }_{50}^{18} \mathrm{Sn}$?
3. Людина може працювати в зоні радіоактивного забруднення 120 год. Яка потужність дози γ-випромінювання в цій зоні, якщо гранична доза дорівнює $0,45 \Gamma \mathrm{p}$?
4. Середня поглинута доза випромінювання працівником, який працює в зоні радіоактивного забруднення, дорівнює 8 мкГр на

годину. Скільки днів по 5 год щодня може перебувати в цій зоні працівник, якшо допустима доза становить 42 мГр на рік?

BAPIAHT 3

1. Як залежить поглинута доза радіоактивного випромінювання від потужності випромінювання?
2. Яку кількість протонів містить ядро атома Барію ${ }_{56}^{137} \mathrm{Ba}$?
3. Потужність дози γ-випромінювання в зоні радіоактивного забруднення становить $0,2 \frac{\mathrm{~m} \Gamma \mathrm{p}}{\text { год }}$. Працівник може перебувати в цій зоні 875 год. Якою є гранична доза для працівника?
4. Після аварії у 1986 році на Чорнобильській атомній електростанції були поширенні думки про закриття атомних електростанцій. Які у вас думки з цього приводу?

BAPIAHT 4

1. Чи завжди в ядрі атома міститься однакова кількість протонів \mathbf{i} нейтронів?
2. Ядро якого хімічного елемента містить 35 протонів?
3. Заряд ядра атома деякого хімічного елеменга дорівнює $6,4 \cdot 10^{-18} \mathrm{~K}$. Який порядковий номер цього елемента у періодичній системі хімічних елементів Менделєєва?
4. Для чого використовують радіоактивні ізотопи в різних галузях науки, техніки і виробництва?

ЗБІРНИК ЗАДАЧ

1. Електричне поле. Закон Кулона. Джерела струму

Початковий рівепь

1.1. Які два типи зарядів існують у природі, як х̈х називають і позначають?
1.2. Як взаємодіють між собою дві ебонітові палички, натерті хутром?
1.3. Як взаємодіють між собою дві скляні палички, натерті шовком?
1.4. З яких частинок складаються атоми речовин?
1.5. Який знак електричного заряду ядра атома?
1.6. Який знак заряду електрона? Протона?
1.7. Чи відрізняється простір навколо заряджених тіл від простору навколо тіл незаряджених?
1.8. Чи існує електричне поле навколо електрона?
1.9. Як змінюється електричне поле точкового зарядженого тіла при віддаленні від нього?
1.10. Чи існує електричне поле навколо незарядженого точкового тіла?

Середній рівень

1.11. Іноді при фарбуванні пульверизатором металевої поверхні їй надають заряд одного знака, а крапелькам фарби - протилежного знака. Для чого це потрібно?
1.12. Які властивості повинні мати нитки, на яких підвішують заряджені тіла при експериментах $з$ електрики?
1.13. Чи можна одержати заряд, який дорівнює $10^{-20} \mathrm{~K}$? Поясніть відповідь.
1.14. Які особливості будови металів спричиняють провідність металів?
1.15. Чому стрілка електроскопа відхиляеться, коли його заряджають? Чи залежить відхилення стрілкй від знака заряду?
1.16. Як називають атом, який: а) втрачає електрон; б) отримус електpOH ?
1.17. Мідна кулька, яка висить на шовковій нитці, заряджена негати* вно. Як зміниться їі заряд після заземлення?
1.18. Які дії електричного струму можна спостерігати, пропускаючи струм крізь морську воду?
1.19. Чому при терті завжди електризуються обидва тіла? Що можна сказати про їхні заряди?
1.20. Вода з посудинн витікає тонким єтруменем. Якщо воду в посудині заряднти (наприклад, за днпомогою електрофорної машмя. ни), то струмінь розбризкується. Ноясніть явище.

Доснавишій pigevs

1.21. Чи досить просто торкнутись кульки елекгроскона зарядженоюо єбовітовон паличкою, щоб сгрілка електроскопа помігно вілдн. лиіась? Обгрунтуйте відповідь.
1.22. Якщо до зарядженої металевої кульки доторкнутись пальцеи, вона этрачас практично весь заряд. Чому?
1.23. इаі однакові металеві кульки висять на шовкових нитках, не то ркночись одна одної. Одна з кульок заряджена. Як зменшити зардд цієї кульки вдвічі? У чогири рази? Чи годиться запропонешаний вами спосіб, якщо кульки ебонітові?
1.24. Дыя того моб провідник втратив електричний заряд, його зазем. люють. Чому при цьому провідник розряджаєсься?
1.25. Чому незаряджені провідники притягаються до заряджених, незалежно від знака заряду?
1.26. Як змінюеться сила притяганяя двох різнойменно зарядженнх тіл, якщо мік ними помістити незаряджену металеву кулю?
1.27. Чому стрілка електроскопа відхиляється, якцо до нього піднести заряджений предмет, не торкаючись електроскопа?
1.28. Як зміниться відхилення стрілки зарядженого електроскопа, якщо піднести до нього, не торкаючись, тіло $з$ однойменним зарядом? Зарядом протилежного знака?
1.29. Чому екран телевізора вкривається пилом швидше, ніж інші поверхні в кімнаті?
1.30. Дтя чого металеву кулю на стержні електроскопа роблять порожнистою з отвором на поверхні?

Високий рівень

1.31. Маленька кулька, но має заряд $+3 \cdot 10^{-7} \mathrm{Kл}$, висить на нитці. До неї знизу піднесли на відстань 0,3 м заряд $+5 \cdot 10^{-8} \mathrm{~K}$, у результаті чого сила натягу нитки зменшилась у два рази. Визначте масу кульки.
1.32. Із якюо силою та в якому напрямку діс електричне поле на заряджену пилинку, маса якої дорівнює $5 \cdot 10^{-5} \mathrm{r}$, якцю вона перебуває в рівновазі?
1.33. Чи можуть тіла електризуватічея при дотиканні без терия?
i.34. Дві легкі однойменно заряджені гільзи з фольги підвішені на шовкових нитках однакової довжини в одній точці. !! во відбу. деться, якщо доторкнутися до однісї з гільз рукою?
1.35. Натерта графітом тенісна кулька підвішена між двомад вертикальними металевими пластинами. Якщо пластинам надати протидежних зарядів, кулька почннає швияко коливатися, то черзі вдаряючись об пластини. Лоясніть це явище.
1.36. Як за допомогою зарядженої ебонітової палички надати двом металевим кулькам заряди різнкх знаків, до того ж так, щоб заряд самої палички при цьому не змінився?
1.37. Заряджена кулька знаходиться в центрі незарядженої металевої сфери (див. рис.). Покажіть схематично розгоділ зарядів на кульиі та сфері. Чи існує електрицне поле поза сферою?

1.38. Як відомо, однойменні заряди відштовхуються. А ги можуть два однойменно зараджених тіла притягуватись одне до одного?
1.39. Чи може тіло при заземленні отримати електричний заряд?
1.40. Чому спалах блискавки супроводжусвся громом?

2. Сила струму. Напруга. Олір. Закон Ома для ділянки кола

Початковий рівснь

2.1. Поясніть, як вмикають вольтметр у коло електричного струму.
2.2. Чому висока напруга небезпечна для життя?
2.3. Розміри мідної та залізної дротин однакові. Яка дротина має більший юпір?
2.4. Який опір сталевого дроту завдовжки 1 м і площею поперечного нерерізу $1 \mathrm{~mm}^{2}$?
2.5. Є дві мідні дротини однакової довжинв. В однієї площа поперечного перерізу становить $1 \mathrm{~mm}^{2}$, а в іншої - $5 \mathrm{mм}^{2}$. У якої дротини опір мелиний і у скільки разів?
2.6. Є дві дротини однакового перерізу і внготовлені з одного матеріалу. Довжина однієї дорівнюе 20 cm , іншої - 40 cm . Яка дротина має бізьшнй опір і в скільки разів?
2.7. Нматок міцного дроту розрізали кавпіл. У скільки разів змінився опір короткого дроту порівняно з цілим?
2.8. Чому електричну лампу, розраховану на напругу 128 B , не можна вмикати в коло $з$ напругою 220 B ?
2.9. Напругу на кінцях провідника збільшили вдвічі. Як змінилася сила струму, що протікає у провіднику?
2.10. Необхідно вдвічі зменшити силу струму в даному провіднику. Що для цього слід зробити?
2.33. Запропонуйте схему з'єднання джкерела струму, лампочки та двох цсремикачів, яка дає можливість вмикати і вимикати свіч.о з двох різних місць, незалсжно від положсння іншого перемикача.
2.34. Який опір залізної труби завдовжки $l=3 \mathrm{~m}$, якцо внутріншій діаметр труби $d=3 \mathrm{~cm}$, а товщина її стінок $a=1$ мм?
2.35. Опиніть $2-3$ способи вимірювання довжини котушки мідного дроту. Дріт ізольований тонким шаром лаку. Розмотати котушку складио; кінці дроту доступні. Які прилали вам знадобляться?
2.36. Опір мідного дроту $R=10$ м, його маса $m=1$ кг. Яка довжина l дроту? Яка площа його поперечного перерізу?
2.37. Два алюмінієвих дроти мають рівні маси. Діаметр першого дроту вдвічі більший, ніж діаметр другого. Який із дротів має більний опір і у скільки разів?
2.38. 31 кг металу потрібно виготовити 1 км дроту. У якому вигадку опір дроту буде менший: якшо його зробити з міді чи зі срібла? У скільки разів?
2.39. Потрібно виготовити дріт завдовжки 100 m , щоб його опір дорівнював 1 Ом. У якому випадку дріт буде легним: якщо його зробити з алюмінію чи з міді? У скільки разів?
2.40. Шнур телефонної труоки складається із 20 мідних проводів перерізом 0,05 мм 2 кожен. Визначте опір 5 m такого шнура.

3. Послідовне і паралельне з’еднання провідників.
 Розрахунок електричних кіл

Початковий рівень

3.1. Резистори 3 опорами 5 Ом і 10 Ом ' 'єднані послідовно. Чому $_{\text {' }}$ дорівнює їх загальний опір?
3.2. Як можна використовувати дві однакові лампи, розрахованих на 110 B, у мережі з наиругою 220 B ?
3.3. Lо резистора з опором 10 Ом підключили паралельно резистор з опором 1 Ом. Як змінився зағальний опір ділянки?

Збірник задач
3.4. Два резистори, опори яких 2 Ом і 4 Ом, підключені паралельно до батарейки. Напруга на якому 3 них більша?
3.5. Ділянка електричного кола складається 3 двох паралельно з'єднаних резисторів $з$ опором 2 Ом кожний. Накресліть схему ділянки і визначте її загатьний опір.
3.6. Два резистори, опори яких 5 Ом і 10 Om , під'єднані паралельно до батарейки. Сила струму в якому 3 них більша?
3.7. Три однакові опори з'єднують різноманітними способами. Накресліть схеми цих з'єднань.
3.8. Як увімкнути два резистори $з$ опорами 2 Ом і 3 Ом, щоб їхній загальний опір був мінімальним? Максимальним?
3.9. На одній з трьох паралельно з'єднаних ламп напруга 6 В. Як розрахувати напругу на кожній із двох інших ламп?
3.10. У колі з послідовним з'єднанням трьох ламп і реостата в одній з ламп сила струму 0,1 А. Яка сита струму в інших лампах? У реoctati?

Середній рівень
3.11. Як можна використаги однакові ламли, розраховані на напругу $3,6 \mathrm{~B}$, якщо напруга в мережі дорівнюе 220 B ? Намалюйте схему кола.
3.12. Резистори $з$ опорами 2 кОм і 8 кОм з'єднані послідовно. На якому 3 них більша напруга? У скільки разів?
3.13. Резистори з опорами 20 Ом і 60 Ом з'єднані паралельно. Чсрез який з них йде більший струм? У скільки разів?
3.14. Ділянка кола складається 3 двох послідовно $3^{\prime} є д н а н и х ~ р е з и с т о-~$ pie, опори яких $R_{1}=50$ Ом і $R_{2}=70 \mathrm{Om}$. Напируга на ділянці кола $U=60 \mathrm{~B} \cdot$ Знайдіть силу сгруму на ділянці I та напругу U_{1} і U_{2} па кожному з резисторів.
3.15. Ялинкова гірлянда, увімкнена в мережу з напругою 220 B , складається 3 однакових ламм, розрахованих на наиругу 4 В кожна. Якщо лампа перегоряє, кількість ламп у гірлянді змениууоть.

пі не повинна перевицувати 5 в? 3.16. Резистори з опоровииувати 5 В?

чені до джерела з напругон і 36 В В. Яка сила паралельно і підклю-
3.17. Загальний Загальна сила струму в колі? Sлкий опір в кожному 3 з'єднаних опір п'ятьох однакових спо яй опір кола? споживача?
3.18. Резистори з опорами
 му в колі та напругу на кожномуу з резнсторів 15 В. Знайдіть силу стру-
3.19. Резистори $з$ опорами $з$ жному з резисторів

опір кола? Яка напруга на резисторах яниані паралелино. Який дорівнюс 3 мА? ? ри резисторах, якщо сила струму в колі
3.20. Резистори $з$ опорами $2 \mathrm{\kappa O}$ і $3 \mathrm{KO}_{\text {м }}$ 'єднані паралельно і підк
 му через кожний з резисторів і опір кола. 15 B. Зайдіть силу стру-
 ялинкової гірлянди, щоб ї мочок потрібно взяти для виготовления мережу з напругою 220 B , якщо кожна викаги в освітлювалнну
3.22. Обчисліть опі нил струму 0,28 A? опором 9,5 Ом, реостата складасться з електричної лаіппччн з
3.23. В електрич 4 і перерізом 0,4 мм 2, з'єднаних подиих провігииків з' слиричу мережу з напругою 120 В ввім послідовно. 9 Ом і 3 Омистори, опори яких відповідно дорі три послідовно резисторі. Оочисліть силу струму в колі та нанругуюь $12 \mathrm{O}_{\text {м }}$,
3.24. У мережу ввімкиені по резистор. Опір нитки розжарювания лодані електрична лампочка озжарювання лампочки дорівнюес $14 \mathrm{O}_{\mathrm{M}}$,

Збіриик задаи
а опір резистора - 480 Ом. Яка напруга на резисторі, якщо на
пруга на лампочці дорівиюе $3,5 \mathrm{~B}$?
яких дорівнююоть 540 Ом, 270 ояанься із трьсх резисторів, опори паралельно.
3.26. Три лампи з опорами $230 \mathrm{Om}, 345 \mathrm{O}_{\mathrm{m}}$ і $690 \mathrm{OM}_{\text {з'єднані парале- }}$ ' льно і включені в коло, сила струму в яксму 2 A . Під якою на-
3.27. Провідники з опораии

мкнені в му провіднику і в загальному колі Внзнате сипу струму в кожно3.28. Зиайіти
$R_{1}=R_{2}=R_{5}=R_{6}=3$ ОМ, $R_{4}=24$ омражено на рисунку кола, якщо

Рис. до. No3.28
3.29

Знайдіть розподіл сил струмів і напруг у колі, зображеному на

Pис. до No3.29
3.30. На клеми (див. рис.) подано однакові і дорівнюють 20 м з ууу 55 В. Опори всіх резисторів кож розподіл струмів і напруг.

Високий рівень

3.31. Вольтметр V_{1} показує 12 B (див. рис.). Які покази амперметра вольтметра V_{2} ?

Рис. до №3.31
3.32. Які покази амперметра і вольтметра V_{2} (див. рис.), якщо вольтметр V_{1} показуе напругу 6 B ?

Рис. до №3.32
3.33. Вольтметр V показує напругу $U=15 \mathrm{~B}$. Якої величини напругу показують вольтметри V_{1} та V_{2} ?

Рис. до №3.33

Збірник задач
3.34. Які значення онору можна одержати, маючи чотири резистори $з$ опорами по 12 Ом? Не обов'язково в кожній схемі використовувати всі резистори. Накресліть схеми відповідних кіл.
3.35. Опір обмотки реостата 16 Ом, довжина реостата 20 cm . При якому положенні повзунка реостата опір показаної на рисунку ділянки кола дорівнює 3 Ом?

Рис. до №3.35
3.36. Який оптір показаної на рисунку ділянки кола?

Рис. до №3.36
3.37. Знайдіть силу струму в кожному з резисторів (див. рис.). Напруга джерела струму 91 B , опір кожного з резисторів 35 Om .
3.38. У колі (див. рис.) $R_{1}=200$ Ом, $R_{2}=400$ Ом, $R_{3}=800$ Ом. Яку напругу покаже вольтметр, підключений до точок C і D, якщо до точок A і B підключити джерело з напругою 12 В? Яку напругу покаже вольтметр, якцо його поміняти місцями 3 джерелом напруги?

Рис. до №3.37

Рис. до No3.38
3.39. Знайдіть силу струму в кожнам Збірник задач рис.) з опорами по 120 Ом, якщо з однакових резисторів (див. нює 36 B .

Рис. до №3.39
3.40. Знайдіть силу струму в кожному $з$ рис.) з опорами по 30 Ом, якцо з однакових резисторів (див. нює 15 В.

Рис. до №3.40

4. Робота і потужність електричного струму.
 Струм у різних середовищах

4.1. Напруга на кінцях ділянки електричночотковий рівень виконує на ній електричний струм прото кола 1 B . Яку роботу 1 A?

Збірник задач

4.2. Дві однакові лампочки, розраховані на напругу $6,3 \mathrm{~B}$, увімкнені в електричне коло. Одна лампочка світить 1 хв, друга - 2 хв. У якій лампочці робота електричного струму була більша?
4.3. Одну електричну лампу ввімкнено в мережу напругою 127 B , а іншу - в мережу напругою 220 B . У якій лампі під час проходження 1 Кл електрики виконується більша робота?
4.4. Одну електричну лампу ввімкнено в мережу напругою 127 B , а іншу - в мережу напругою 220 В. Через яку лампу повинна пройти більша кількість електрики, щоб робота струму була однаковою у двох лампах?
4.5. Чому дорівнює потужність струму в провіднику, якщо за 1 с електричним струмом здійснюється робота 1 Дж?
4.6. Є дві лампи потужністю 60 Bt і 100 B , розраховані на напругу 220 В. Яка 3 них світитиме яскравіше при вмиканні в мережу?
4.7. У квартирі протягом години світили дві електричні лампи. Потужність першої лампи 75 Вт, другої - 100 Вт. У якій з ламп втрата електроенергії більша?
4.8. Дві електричні лампи, потужність яких 40 Вт і $80 \mathrm{Bт}$, розраховані на однакову напругу. Порівняйте опори ниток розжарення обох ламп.
4.9. Наведіть приклади використання теплової дії струму в побуті.
4.10. У чому виявляється теплова дія струму? За яких умов вона спостерігається?
4.11. Чому при проходженні по провіднику струму провідник нагрівається?
4.12. Чому, коли по провіднику пропускають електричний струм, провідник подовжується?
4.13. У чому причина короткого замикання? До чого воно призводить в електричному колі?
4.14. Послідовно з'єднанні мідна і залізна дротина однакової довжини і перерізу підключені до акумулятора. У якої з них виділяється більша кількість теплоти за однаковий час?

Збірник задач
4.15. Як змінюсться опір електролітів внаслідок підвищення температури?
4.16. Де застосовують електроліз?
4.17. Що таке газовий розряд?
4.18. Як змінюється опір напівпровідників при зниженні їньої температури?
4.19. Де і як використовують термістори?
4.20. Наведіть приклади застосування самостійного газового розряду в техніці.

Середній рівень

4.21. Яку роботу виконуе електричний струм за 30 с у лампі, сила струму в якій дорівнює $0,46 \mathrm{~A}$? Напруга на лампі 220 B .
4.22. Яку роботу виконує електричний струм за 10 xB на ділянці кола, якщо напруга на цій ділянці становить 36 B , а сила струму - $0,5 \mathrm{~A}$?
4.23. По провіднику, до кінців якого прикладена напруга 5 B , пройшло 100 Кл електрики. Визначте роботу струму.
4.24. При проходженні через провідник 40 Кл електрики струмом було здійснена робота 200 Дж. Яка напруга була прикъадена до цього провідника?
4.25. Електрична лампочка підключена в коло напругою 10 В. Струмом була здійснена робота 150 Дж. Яка кількість електрики пройшла через нитку розжарення лампочки?
4.26. Через розчин азотного срібла пройшло 240 KJ електрики при напрузі на електродах 5 B . Чому дорівлює робота, здійснена струмом?
4.27. Електродвигун, який включено в мережу, грацював 6 год. Витрата енергії при цьому становила 3240 кДж. Яка потужність електродвигуна?
4.28. Обцисліть роботу, злійснену за 10 хв струмом, пютужність якого становить 25 Вт.
4.29. Потужність, яку споживає електронагрівач, дорівнює $0,98 к \mathrm{Br}$, а сила струму в його колі - $7,7 \mathrm{~A}$. Визначте величину напруги на затискачах електронагрівача.
4.30. Два резистори мають опори по 1 Ом. Яка буде потужність струму, якщо ввімкнути до джерела постійної напруги 1 B один резистор? Два резистори паралельно? Два резистори послідовно?
4.31. На лампочці для кишенькового ліхтарика написано « $4 \mathrm{~B}, 1 \mathrm{Br»}$, на лампі в кімнаті « $220 \mathrm{~B}, 40$ Вт». Яка з ламль розрахована на більшу силу струму? У скільки разів? Які опори ниток у робочому стані?
4.32. Який опір мас електронагрівач з лотужністю 2 кВт, що грацює при напрузі 220 B ?
4.33. Який опір має в робочому стані нитка розжарення лампочки, на якій написано « $36 \mathrm{~B}, 25$ Вт»?
4.34. Яка кількість тепноти виділяеться за 1 годину в обмотиі реостата 3 опором 500 Ом, під'єднаного до джерела постійної напруги 12 B?
4.35. Діляыка кола складається з двох послідовно 3^{\wedge} єднаних провідників, опори яких дорівнюють 40 Ом і 60 Ом. Напруга на ділянці 60 В. Яка кількість теплоти виділиться на кожному 3 резисторів $3 \mathrm{a} \mid \mathrm{xB}$?
4.36 Діяянка кола складаєтьея 3 двох паралельно з'єднаних провідників, опори яких становлягь 40 Ом і 60 Ом. Напрруга на ділянці кола 60 B . Яка кількість теплоти виділиться на кожному з резистоpis 3 a 1 xb ?
4.37. Яка кількість теплоти виділяється за $20 \times в$ при силі струму $0,4 \mathrm{~A}$ у провіднику опором 200 Ом?
4.38. Скільки теплоти виділиться в електричному нагрівачі протягом 2 хв, якщо його опір 20 Ом, а сила струму в колі 6 A ?
4.39. У спіралі електроплитки, яка ввімкнена в розетку з напругою 220 B , при силі струму 3,5 А виділиться 690 кДж теплоти. Скільки часу була ввімкнена в мережу плитка?
4.40. Скільки хрому осіло на деталі під час іІ хромування протягом $50 \mathrm{xв}$, якщо сила струму в електролітичній ванні дорівнювала 1 А? Електрохімічний еквівалент хрому становить $1,8 \cdot 10^{-7}$ кг/Кл.

Достатиій рікень

4.41. Яка з однакових ламп (див. рис.) світить яскравіше, ніж інші? Яка (які) тьмяніше?

Рис. до №4.41
4.42. Яку роботу виконус електричний струм за 1 год в лампі потужністю 60 B ? На яку висоту можна підняти людину масою 70 кг, затративши таку енергію?
4.43. У якому з двох резисторів більша потужність струму при послідовному з'єднанні (див. рис. а) і паралельному з'єднанні (див. рис. б)? у скільки разів більша, якщо опори резисторів $R_{1}=10$ Ом i $R_{2}=100$ Ом?

Рис. до №4.43

4.44. Електрична лампочка потужністю 40 B світить 10 годин на день. Визначте витрату енергії за місяць (30 днів). Виразіть відповідь у кіловат-годинах і джоулях.
4.45. Резистор з опором 15 Ом під'єднаний до джерела постійної напруги. У скільки разів зміниться споживана ним потужність, якщо послідовно з цим резистором увімкнути інший 3 опором
60 Ом?

Збірник задач 67
4.46. Резистори з опором 10 Ом, 20 Ом і 30 Ом з'єднані послідовио і підключені до джерела постійної напруги 36 В. Яка потужність струму в кожному з резисторів? В усьому колі?
4.47. Резистори з опорами $12 \mathrm{Om}, 20$ Ом і 30 Ом з'єднані паралельно і підключені до джерела постійної напруги 60 В. Яка потужність струму в кожному з резисторів? В усьому колі?
4.48. На двох лампочках написано « $220 \mathrm{~B}, 60 \mathrm{~B}$ » i « $220 \mathrm{~B}, 40 \mathrm{Bт»}$. якій 3 них буде менша потужність струму, якщо обидві лампи ввімкнути в мережу послідовно?
4.49. Ллинкова гірлянда, увімкнена в мережу з напругою 220 B , складається з однакових ламп, на яких написано « $4 \mathrm{~B}, 2$ Вт». Яка по тужність струму в гірлянді при нормальному розжарені лампв: Якщо ламиа перегоряє, кількість ламп у гірлянді зменниуєтьсл. Яка потужність струму в гірлянді буде після того, як персгорять п'ять ламп? У скільки разів зміниться потужність кожної лампи:'
4.50. Hка потужність струму в кожному з резисторів (див. рис.)? Опя кожного з резисторів становить 10 Om , до ділянки кола прнжла дено напругу 30 B.

a)

б)

Рис. до №4.50
4.51. Резистори's опорами 24 Ом і 72 Ом підключають до джерела постійної нагруги спочатку послідовно, а потім паралельно. У якому випадку у першому з резисторів виділясться більша кілякість теплоти за один і той же час? У скільки разів більша?
4.52. Нагрівач 3 опором 20 Ом увімкнений послідовно з реостатом $у$ мережу з напругою 220 В. Який опір реостата, якщо потужністи нагрівача $1,28 \mathrm{kBr}$?
4.53. Як необхідно під'єднати до джерела постійної напруги п'ять резисторів з різними опорами, щоб отримати максимальну кількість теплоти за 1 хв?
4.54. Мідний і алюмінісвий дроти однакових розмірів увімкнені паралельно. У якому з них виділяється більша кількість теплоти за один і той же час? У скільки разів?
4.55. Стальний i алюмінісвий дроти однакових розмірів увімкнені послідовно. У якому з них виділяеться більша кількість теплоти за один і той же час? У скільки разів?
4.56. Знайдіть потужність струму в кожному з однакових резисторів з

Рис. до . Nе4.56
4.57. Визначити масу кисню, який виділяеться під час електретізу підкисленої води протягом 1 год при силі струму 10 A . Елекгрохімічний еквівалент кисню $8,3 \cdot 10^{-8} \mathrm{\kappa г} /$ Кл $^{\text {. }}$
4.58. Для покриття цинком металевого виробу в електролітичній ванні використовують цинковий анод масою 68 r. Який заряд повинен пройти через ванну, щоб витратився весь електрод? Електрохімічний еквівалент цинку $3,4 \cdot 10^{-7}$ кг/Кл.
-4.59. Який заряд потрібно пропустити через розчин мідного купоросу, щоб під час електролізу на катоді електролітичної ваннни виділився 1 кг міді? Електрохімічннй еквівалент міді $3,3 \cdot 10^{-7}$ кг/Кл.
4.60. При нікелюванні деталі протягом 4 год через електролітичну ванну проходив струм силою 10 A . Яка товщина шару нікелю, що

3бірник задач
69
осів на деталі, якщо площа ї поверхні $900 \mathrm{~cm}^{2}$, эустина нікелю $8,9 \cdot 10^{3} \mathrm{kr} / \mathrm{m}^{3}$, його електрохімічний еквівалент $3,3 \cdot 10^{-7} \mathrm{Kг} / \mathrm{K}$?

Високий рівень

4.61. Тролейбус рухається рівномірно зі швидкістю $10 \mathrm{~m} / \mathrm{c}$. Знайдіть силу тяги двигуна тролейбуса, якщо при ККД, який дорівнює 80%, і напрузі в контактній мережі 550 В по обмотці двигуна проходить струм снлою 50 A .
4.62. Транспоргер піднімає за 1 хв вантаж, маса якого дорівнюе 300 кг, на висоту 8 м. ККД транспортера 60%. Визначте силу струму через електродвигун транспортера, якщо напруга в мережі 380 B .
4.63. Приміщення освітлюють чотири послідовно з'еднані лампи, на кожній з них написано « $12 \mathrm{~B}, 25$ Вт». Лампи горять нормальним розжаренням. Одна з ламп перегоріла; їі замінили лампою, на якій написано « $12 \mathrm{~B}, 40 \mathrm{BT} »$. Чи буде нова лампа світити яскравіше, ніж інші? Збільшиться чи зменшиться загальна потужність струму?
4.64. На одній лампі написано « $220 \mathrm{~B}, 40 \mathrm{~B} »$, а на іншій (для кишенькового піхгарика) - «4 B, 1 Вт». Що станеться, якщо ці лампи з'єднати послідовно і включити в мережу з напругою 220 в? Що зміниться, якщо 40 -ватну лампу замінити на 100 -ватну?
4.65. Якщо підключити два резистори послідовно до джерела постійної напруги, потужність струму на ділянці кола 4 Bt ; якщо ті ж резистори підключити до цього джерела паралельно, то потужність струму 18 Вт. Якою буде потужлість струму в кожному з резисторів, якщо їх почергово підключити до того ж джерела напруги?
4.66. Я́кі покази амперметра і потужність струму в колі (див. рис.), якщо $U=16 \mathrm{~B}, R_{1}=30 \mathrm{Om}, R_{2}=60 \mathrm{Om}, R_{3}=40 \mathrm{Om}, R_{4}=120 \mathrm{Om}$?

Рис. до №4. 66
4.67. Лкий з резисторів у показаній на рисунку ділянці кола споживае найбільше енергії, якщо $R_{2}=R_{3}=2 R_{1}, R_{4}=4 R_{1}$?

Рис. до No4. 67

4.68. На електричній ламночці написано «9 В, 12 Вт». Як підклюония џю лампочку до джерела постійної напруги 18 B , гюбб всна горіла нормапьним розжаренням? У ваному розпоряджсині достатия кількість лампочок, не аких написано «9 B, 4 В»
4.69. Яка потужність стрмму в кожному з резисторіз (див. рис.), мкно напруга на джерепі струму 150 B , а опори резисорів $R_{1}=3$ Ом, $R_{2}=20 \mathrm{OM}, R_{3}=300 \mathrm{M}$?

Puce Ru No4.69

P146 29 Ne4. 70

 Hatomi, нarpyra crana.
4.7\%. У скільки разів зміниться потукність струму в лампах 1 і 2 (див. рис.) і загальна споживана потужність, якщо памна 3 перегорить? Усі лампи однакові. Напруга стала.

Рис. до No4. 71

4.72. Чотири ламіи, потужність кожної з яких дорівнює 25 B , увімкнені послідовно в мережу з напругою 36 B , світять нормальним розжаренням. Послідовно з лампами вмикають реостат. При якому опорі реостата споживана лампами потужність зменшиться вдвічі?
4.73. В електричному самоварі потужністю $600 \mathrm{Bт}$ і електричному чайнику пютужністю 300 Br при вмиканні в мережу напругою 220 B , на яку вони розраховані, вода закипає одночасно через 20 хв. Через скільки часу закипить вода в самоварі та чайнику, якщо з’сднати їх послідовно й увімкнути в мережу?
4.74. На частину розжареної спіралі електроплитки потрапила вода. Як зміниться розжарення тих ділянок спіралі, на які вода не потрапила? При розв'язанні враховуйте залежність опору металу від температури.
4.75. Визначте, на яку напругу розрахований електрокип'ятильник, який за 5 хв нагріває 0,2 кг води від $14^{\circ} \mathrm{C}$ до кипіння, за умов, що по його обмотці протікає струм 2 A . Втратами енергії знехтуйте.
4.76. Електрокип'ятильник зі спіраллю опором 160 Ом вміщений у посудину, яка містить 0,5 кг води при $20^{\circ} \mathrm{C}$. Його ввімкнули в мережу 3 напругою 220 B . Через 5 хв спіраль вимкнули. Яка температура води в посудині? Втратами теплоти знехтуйте.
4.7\%. Розрахуйте теплову віддачу кип'ятильника, якщо відомо, що при силі струму 5 A і напрузі 100 В у ньому можна протягом 8 хв закип'ятити 0,6 кг води з початновою температурою $14^{\circ} \mathrm{C}$.
4.78. За час 40 с у колі, яке скьадасться з трьох однакових нровітників, з'єднаних паралельно й увімкнених у мережу постійної напруги, виділилось певна кількість теплоти. За який час внділиться така ж кількість теплоти, якцо провідникя з'єднати нослідовно?
4.79. Скільки часу повинен тривати процес е.ектрепиу пілкиепеної води при струмі 100 A , щоб отриманим вотнем можна було заповнити за нормалыних умов кулю-зонд, яка змогла σ підняти вантаж масою 200 кг? Масу оболонки до уваги не брати.
4.80. Визначити об'єм хлору за нормальних умов, якнй отримуюоть протягом однісї доби, якщо потужиісгь струму, цо живить електролітичлі ванни з розчином хлорводневої кислоти (НСІ), 240 кВт при напрузі 40 B .

5. Мапиitие поле.

Початковай рівень.

5.1. Яким способом можна дізнатися, чи є струм у провіднику, не користуючнсь ампермегром?
5.2. Блискавка вдарила в яцик зі сталевими ножами та виделками. Після цього вони виявилися намагніченими. Як пе пояснити?
5.3. Яким чином можна виявити наявність у просторі магнітного поля?
5.4. Як за допомогою компаса визначити, чи тече сгрум у провіднику?
5.5. Які за формою бувають постійні магніти?
5.6. Як називають полюоси магнiту?
5.7. Як взаємодіють різнойменні та однойменні чолноси магнітів'?
5.8. Які переваги електричних двигунів порівняюо з іншими двигунами?
5.9. Лк можна змінити напрям руху провідиика зі струмом у магнітному полі?
5.10. Наведіть відомі вам приклади застосування електричних двигунів.

Середній рівень

5.11. На які частинки або тіла діє електричне полс? Магнітне поле?
5.12. Чи відхилиться магнітна стрілка, якщо їі розмістити поблизу пучка рухомих частинок: а) електронів; б) нейтральних атомів; в) позитивєих йонів?
5.13. Чи можна розрізати магніт так, щоб один з одержаних магнітів мав тільки нівлічний поюс, а інний - тільки південний?
5.14. Виготовляючи саморобний електромагніт, чи можна неізольований провід намотувати на залізие осердя?
5.15. Чому магнітна дія котушки, по якій іде струм, посилюється, коли в неї вводять залізне осердя?
5.16. Грри завантаженні підйомним електромагнітним краном сталевих гредметів дужс часто вони не відпадають від електромагяіта після вимикання струму в його обмотці. Шо слід зробити, щоб предмети відпали?
5.17. Чому корпус комнаса роб́лять із міді, алюмініно, пластмаси та інших матеріалів, але не із заліза?
5.18. Від чого залежнть напрям сили, яка діс на провідник із струмом, но перебувас в магнітному полі?
5.19. Якими способами створюється магнітне поле в електродвигуні?
5.20. Виток із струмом обертається в магнітному полі. За рахунок якої енергії здійсноється механічна робота з обергания рамки?

Достатній рівснь
5.21. Північний полюе магніту підносять до позитивно зарядженої тенісюї кульки, яка висить на !итці. Цо буде спостерігатися -..притягання чи відшговхування? Як зміниться відповідь, якщо кулька заряджена негативно?
5.22. Північний полюс магніту підиосять, до незарядженої кульки на нитці. Цо буле спостеріпатися - притягання чи віднтовхування? Розгляньте два випадки: а) кулька графітоеа; б) кулька сталева.
5.23. У тролейбуса встановлені електродвигуни постійного струму. Притягуються чи відштовхуються дроти тролейбусної лінії?
5.24. Як повернеться магнітна стрілка поблизу дроту, якщо по ньому пропустити сильний електричний струм? Розгляньте два випадки: а) дріт проходить над стрілкою (див. рис.); б) дріт проходить під стрілкою (див. рис.).

a)

б)

Рис. до №5.24
5.25. Як намотати дріт на порожнистий керамічний циліндр так, щоб при пропусканні по дроту струму всередині циліндра не виникало магнітне поле?
5.26. Вкажіть напрям електричного струму в котушці (див. рис.).

Рис. до №5.26
5.27. Як буде змінюватися підйомна сила електромагніта, якщо переміщувати повзунок реостата праворуч (див. рис.)?

Рис. до №5.27

5.28. Напрям електричного струму в котушках електромагніту можна змінювати (див. рис. а, б). Відомо, що сила притягання електромагніту максимальна, коли на кінцях сердечника різнойменні магнітні полюси. Який з рисунків відповідає цьому випадкові?

Збірник задач

a)

б)

Рис. по No5.28
5.29. Чому магнітні стрілки, розміщені далеко одна від одної, орієнтуються в одному напрямі (див. рис. а)), а розміщені поблизу одна від одної (див. рис. б)) - в іншому напрямі?

Рис. до №5.29
5.30. До полюсів двох цілком однакових магнітів притягнулось по цвяшку. Але якщо ці два полюси доторкнути один до одного, цвяшки зразу ж відпадуть. Чому?

Рис. до №5.30

Високий рівень

5.31. Два паралельні провідники, по яких течуть струми в одному напрямі, притягуються. Чому ж два паралельні електронні пучки відштовхуються? Чи можна поставити дослід так, щоб паралельні провідники, по яких течуть струми в одному напрямі, теж відштовхувались?
5.32. Чи можна намотати дріт на керамічний циліндр так, щоб при пропусканні по дроту струму на кінцях циліндра утворились південні магнітні полюси?
5.33. Сталева добре відполірована куля має ідеально круглу форму. Чи можна намагнітити цю кулю?
5.34. М'яка металева пружина висить, занурившись нижнім кінцем у солону воду на невелику глибину (див. рис.). Цо станеться після замикання ключа?

Рис. до №5.34
5.35. До чого приведе постукування по намагніченому цвяху чи його струшування, якщо зовнішне магнітне поле відсутнє?
5.36. Насіння бур'янів, на відміну від зерен пшениці, «ворсисте». Як за допомогою електромагніту і залізних ошурок очистити зерно від насіння бур'янів?
5.37. Уявіть, що Земля «втратила» своє магнітне поле. Які це спричинило 6 наслідки? Як ви оцінюєте існування у Землі магнітного поля - позитивним для життя на нашій планеті явищем чи негативним?
5.38. Притягнеться до котушки чи відштовхнеться від неї магніт (див. рис.), якщо коло замкнути?

Pис. до No 5.38
5.39. Як можна намагнітити сталевий стержень і розмагнітити сталевий магніт?
5.40. Одним і тим же магнітом можна намагнітити доволі велику кількість сталевих деталей. За рахунок якої енергії відбувається їх намагнічування?

6. Атомие ядро. Ядерна енергетика

Початковий рівень

6.1. Який електричний заряд мають β-промені?
6.2. Носіями якого електричного заряду є α-промені?
6.3. Чому γ-промені не відхиляються від прямолінійного руху ні магнітним, ні електричним полями?
6.4. Для чого використовують дозиметри?
6.5. Назвіть частинки, з яких складаєтьея ядро атома.

Середній рівень
6.6. Скільки протонів містить ядро ${ }_{20}^{46} \mathrm{Ca}$?
6.7. Скільки нейтронів містить ядро ${ }_{50}^{124} \operatorname{Sn}$?
6.8. На малюнку зображено вплив на радіоактивне випромінювання електричного поля, створеного двома зарядженими металевими пластинами. Яка пластина має позитивний заряд? ${ }^{\text {Tому? }}$

Рис. до №6.8
6.9. Чому γ-промені мають велику проникну здатність?
6.10. Яка природа і властивості α, β і γ-променів?

Достатнній рівень

6.11. Чому нейтрони шкідливо впливають на організм людини?
6.12 Допишіть такі ядерні реакції:
a) ${ }_{19}^{41} \mathrm{~K}+? \rightarrow{ }_{20}^{44} \mathrm{Ca}+{ }_{1}^{1} \mathrm{H}$;
б) ${ }_{25}^{55} \mathrm{Mn}+{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{26}^{55} \mathrm{Fe}+$?
6.13. Які сили діють між нейтронами в ядрі; між протонами і нейтронами; між протонами?
+6.14. Потужність дози γ-випромінювання в зоні радіоактивного забруднення дорівнює $0,3 \mathrm{~m}$ р $/$ год. Скільки часу може перебувати людина в цій зоні, якщо гранична доза дорівнюоє 0,27 Гр?
6.15. Швицкість α-частиики в середньому в 15 разів менша за швидкість β-частинки. Чому ж тоді α-частинка менше відхилясться магнітним полем?

Високнй рівень

6.16. Людина працюе в лабораторії для ядерних досліджень протягом 220 днів на рік по 5 годин щоденно. Гранично допустима доза становить 44 мl"p за рік. Середня поглинута доза працівником дорівнює 5 мкГр за годину. У скільки разів поглинута доза вим промінювання за рік менна допустимої дози опромінення?

+ 6.17. Міжнародна комісія у справах радіаційного захисту встановюла для тих, хто має справу з випромінюванням, гранично допустима доза на рік становить 0,05 Гр. Чи беезпечною є робота працівника атомної електростанциї, якщо за рік роботи його тіло масою 80 кг поглинуло 2,4 Дж іенізуючого випромінювання?
76.18. Середня поглинута доза випромінювання працігником, який працюе з ренттенівськоло установкою, дорівнюе 8,5 мкТр на годину. Чи с безпечною робота працівника протягом 210 днів на рік поо 7 год на день, якцо гранично допустима доза становить 45 мГр на рік?
6.19. Як пояснити викидання з ядра радіоактивної речовини електрона пйд час β-розпаду, якщо до скљаду ядра входять лише протони і нейтрони?
6.20. На рисунку зображено схему досліду Резерфорда з розсіювання α-частинок, де E-- екрани, що світяться під дією α-частинок. Як пояснити, чому розсіюються частинки, чому частинка 5 змінила напрям майже на протилежний? Лкі висновки 3 цього зробив Резерфорд?

Рис. до №6. 20

